
 

 ©VIBROENGINEERING. VIBROENGINEERING PROCEDIA. NOVEMBER 2013. VOLUME 2. ISSN 2345-0533 41 

Application of Information-Geometric Support Vector 

Machine on Fault Diagnosis of Hydraulic Pump 
Zhipeng Wang, Chen Lu and Zili Wang 

APPLICATION OF INFORMATION-GEOMETRIC SUPPORT VECTOR MACHINE ON FAULT DIAGNOSIS OF HYDRAULIC PUMP.  

ZHIPENG WANG, CHEN LU AND ZILI WANG 

Zhipeng Wang, Chen Lu1 and Zili Wang 

School of Reliability and Systems Engineering, Beihang University, Beijing, 100191, China 
Science & Technology Laboratory on Reliability & Environmental Engineering, Beijing, 100191, 
China 
 
E-mail: luchen@buaa.edu.cn 

Abstract. The growing demand for the safety and reliability in industries triggers the development of condition 

monitoring and fault diagnosis technologies. Hydraulic pump is the critical part of a hydraulic system. The 

diagnosis of hydraulic pump is very crucial for reliability. This paper presents a method based on information-

geometric support vector machine (IG-SVM), which is employed for fault diagnosis of hydraulic pump. The IG-

SVM, which uses information geometry to modify SVM, improves the performance in a data-dependent way. To 

diagnose faults of hydraulic pump, a residual error generator is designed based on the IG-SVM. This residual 

error generator is firstly trained using data from normal state. Then, it can be used for fault clustering by analysis 

of the residual error. Its feasibility and efficiency has also been validated via a plunger pump test-bed. 

1. Introduction 

As processes and machinery become more and more complex, fault detection and diagnosis are 
emerging as the main task of a monitoring system and have an effective role for the safe operation and 
long life of systems. Condition monitoring is important for increasing machinery availability, 
improving manufacturing process productivity and reliability [1].  

Hydraulic pump is a key component which varies the volume of fluid delivered to constant system 
pressure. If a fault detection scheme can be developed that gives an early warning of component 
failures, then repairs or replacements can take place at the earliest or most convenient time with the 
minimum loss of productivity [2]. So, diagnosis of hydraulic pump is necessary. However, hydraulic 
pump is complex and in a very high degree of coupling [3]. Considering the complexity and the severe 
working conditions, data-driven fault detection method is usually applies to its online fault diagnosis. 
By now, a lot of data-driven methods have been proposed, such as: wavelet decomposition [4], neural 
networks (ANNs) [5, 6], fuzzy logic, kernel principal component analysis [7], as well as D-S evidence 
theory [8].  

Support vector machine (SVM), as a data-driven method, has been widely applied. Compared with 
ANNs, SVM overcomes many detects, such as over-fitting, local convergence. Additionally, SVM has 
advantages over ANNs, in terms of robustness and prevention of Curse of Dimensionality, etc. It has 
been applied in many fields, such as pattern recognition and fault diagnosis [1].  

Despite the excellent applicability, the performance of SVM largely depends on the kernel [9, 10]. 
Mostly, the kernel functions are chosen by experience. However, unsuitably chosen kernel functions 
may lead to significantly poor performance [11]. By now, there seems to be no systematic way of 
choosing appropriate kernel functions [12]. It is reported that choosing a kernel corresponds to a 
smoothness assumption of the discriminant function of the classifier. In case when we have some prior 
knowledge, we can utilize them to choose a kernel [13]. However, in practice, the prior knowledge is 
usually unknown. Therefore, it is important to optimize the kernel in a data-dependent way. Here, an 
information-geometric method is employed in this study. By analyzing the structure of the Riemannian 
geometry induced in the input space by the kernel, the SVM can be modified in a data-dependent way 
and the information-geometric SVM (IG-SVM) can be obtained.  

                                                      
1 To whom any correspondence should be addressed. 
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In this paper, a residual error generator based the IG-SVM is designed to detect several types of 
failures of hydraulic pump with one-step prediction of chaotic time series. The feasibility and 
efficiency of this method is validated via a plunger pump test-bed. 

2. Methodology 

2.1. Modified SVM using information geometry 

The SVM, proposed by Vapnik, aims at minimizing an upper bound of the generalization error 
through maximizing the margin between the separating hyperplane and the data. Suppose a pattern 
classifier, which uses a hyperplane to separate two classes of patterns based on given examples 
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i i
D x y x y= , where x is a vector in the input space dS R= , { }1,1y∈ −  is class label and 

1, ...,i l= . A nonlinear SVM maps the input data x into a high dimensional feature space n
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may be infinite) by using a nonlinear mapping ( )xφ . Detailed explanation about the basic concepts of 

SVM theory can be found in reference [11].  
To modify SVM kernel using information geometry, it is necessary to analyze the geometrical 

structure induced in the input space by a kernel as follows [14]. 

The mapping ( )xφ  defines an embedding of S into S as a curved submanifold. When F is a 

Euclidean or Hilbert space, a Riemannian metric is thereby induced in the space S, where the length of 
a small line element dx in S is defined by the length in the larger space F. 
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The dot denoting the summation over index α  of φ . The n×n positive-definite matrix 

( ) ( )( )ij
G x g x=  is the Riemannian metric tensor induced in S. It shows that the metric is directly 

derived from the kernel. 
Based on the above analysis, in order to improve the forecasting precision in regression problems, 

special nonlinear map φ , can be constructed such that ( )ij
g x  is reduced around the neighboring areas 

of hyperplane: ( )y f x b ξ− − = , which is contrary to the method of Amari in classification problems. 

This idea can be implemented by a conformal transformation of kernel,  
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  ( ) ( ) ( ) ( ), ' ' , 'K x x c x c x K x x=
ɶ    (5) 

with a properly positive scalar function ( )c x . ( ), 'K x xɶ  is called a conformal transformation of a 

kernel by factor. The nonlinear mapping ( )xφ  can be regarded as being modified to 

( ) ( ) ( )x c x xφ φ=
ɶ , which satisfies the Mercer positivity condition. 

Therefore, if we choose the function ( )c x  in a way such that its value is large when x is close to 

the boundary and small otherwise, we can realize the idea of enlarging the spatial resolution around 

the boundary [9]. Taking the above analysis into consideration, ( )c x  can be chosen as: 
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where the parameter m, 
i
o , τ  are the number of the partitioning points, the center and the width of the 

ith partition, respectively. Out of the circles, the value of ( )c x  is very small, so is its derivative [13]. 

Therefore, this function satisfies the aforementioned requirement and can be used to modify SVM in a 
data-dependent way. 

2.2. Residual error generator 

Residual error generator can be designed for fault diagnosis based on IG-SVM prediction process. The 
structure is shown in figure 1. 

 

 

Figure 1. Structure of Residual 
Error Generator based on IG-SVM. 

 

Where, ( )x t  is the time series which can be observed of actual system, IG-SVM is the residual 

error generator trained by the data from normal state, ( )x tɶ  is the one-step prediction value of IG-

SVM, and ( )e t  is the output of residual error generator. 

The diagnostic decision is obtained based on the following rule: 

eval th
r J>  → Fault state detected 

eval th
r J≤  → Normal state 

Where, 
eval
r  is the mean absolute value of residual error signal, and 

th
J  is the threshold and can be 

determined by experience. 

3. Experimental results 

In this section, a test rig of SCY Hydraulic plunger pump, was tested and analyzed to verify the 
presented method. In the experiment, two common types of fault in plunger pump were set 
respectively: wear fault between swash plate and slipper and wear fault of valve plate. Under three 
kinds of states, including normal state, as shown in table 1, vibration signal was respectively acquired 
from the end face of plunger pump, with a stabilized motor speed at 5280r/min, and a sampling rate of 
1000Hz.  



APPLICATION OF INFORMATION-GEOMETRIC SUPPORT VECTOR MACHINE ON FAULT DIAGNOSIS OF HYDRAULIC PUMP.  

ZHIPENG WANG, CHEN LU AND ZILI WANG 

44 ©VIBROENGINEERING. VIBROENGINEERING PROCEDIA. NOVEMBER 2013. VOLUME 2. ISSN 2345-0533  

Table 1. Hydraulic pump’s datasets. 

Data State 

Data1 Normal condition 

Data2 Wear fault between swash plate and slipper 

Data3 Wear fault of valve plate 

 
In this case, 200 points of time series data from normal state were used. The first 100 samples were 

employed for training of SVMs, and the last 100 samples for testing and determination of the 
threshold of fault diagnosis. The number of input nodes of SVM was 6. After training and testing, 
prediction model of normal state can be determined. Figure 2 shows the result using one-step iterative 
prediction based IG-SVM. 
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Figure 2. One-step iterative predicted result of data from normal state. 

3.1. Residual error of normal state 

With the residual error generator, the residual error of normal data can be gained. As aforementioned 

eval
r  the mean absolute value of residual error will be used for fault clustering. Figure 3 shows the 

absolute value of residual error of normal state. 
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Figure 3. Absolute value of residual error of normal state. 

3.2. Residual error of wear fault between swash plate and slipper 

Here, 100 points of time series data from the vibration signal with wear fault between swash plate and 
slipper were used via the residual error generator. Figure 4 shows the absolute value of residual error 
of wear fault between swash plate and slipper. 
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Figure 4. Absolute value of residual error of wear fault between swash plate 
and slipper. 

3.3. Residual error of wear fault of valve plate 

100 points of time series data from the vibration signal of hydraulic pump with wear fault of valve 
plate were used for fault detection. Figure 5 shows the absolute value of residual error. 

 

0 10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Time Series

A
m
p
li
tu
d
e
(m

/s
2
)

 

Figure 5. Absolute value of residual error of wear fault of valve plate. 

3.3.1. Discussion 
As aforementioned, with the residual error generator based on IG-SVM, the residual error series were 
calculated respectively. The results show a 100% success rate in correct detection and isolation of 
hydraulic pump faults. This implies that the IG-SVM residual error generator can diagnose faults of 
hydraulic pump successfully. 

4. Conclusion 

The strong nonlinearity features in the vibration signals of hydraulic pump bring difficulties for fault 
diagnosis. In this paper, a method based on IG-SVM is presented to solve this problem. The IG-SVM 
improves the performance of SVM in a data-dependent way. This advantage is utilized to construct a 
residual error generator for fault diagnosis. Additional works are needed to further validate the method 
in wider applications. Meanwhile, how to determine the number of input nodes of SVM is also an 
issue that should be recognized. 
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