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Abstract. In this work, a damage location method for plate-like structures is developed based 

on Lamb wave signal processing using matching pursuit method, which is employed to 

decompose Lamb wave signals into a linear expansion of several chirplet atoms using a fast 

realization algorithm. The relationship between Lamb wave dispersion and the chirplet chirp 

rate is established, which can be used to identify the modes of Lamb waves. Then a method for 

damage location is developed based on the difference between the baseline and the damaged 

signals. The effectiveness and accuracy of the proposed method in identifying the modes and in 

locating defects are demonstrated through experimental tests on the isotropic plate structure and 

honeycomb sandwich composite structure. 
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1. Introduction 

 

Structural health monitoring (SHM) is an emerging technology that combines advanced 

sensor technology with advanced signal processing technology to determine the health 

conditions of structures in real time. Therefore, it can improve the reliability and safety of 

structures, enhance their operating performance and reduce their lifecycle costs. Lamb waves 

can propagate over a long distance in beam-, plate-, and shell-like structures, with damage 

monitoring method based on Lamb waves considered a promising and active SHM method   

[1, 2]. Lamb wave has two fundamental modes, the symmetrical mode (S mode) and the 

antisymmetrical mode (A mode). It also has the dispersion characteristic, which means that the 

propagation velocity varies with the frequency. Due to this dispersion nature, the pulse, which 

is a narrow bandwidth of Lamb wave, can spread in time, and its amplitude diminishes, making 

the signal-to-noise and time-frequency resolutions worse, especially during propagation over a 

long distance. In addition, mode conversion, which occurs when Lamb wave interacts with 

damage or boundary conditions, makes the identification of the damage location difficult. 

Scattering signals are generated when Lamb wave interacts with defects, which can be 

achieved from the difference between healthy and damaged signals. However, the amplitude of 

scattering signals is very small, and extraction of information on the damage from the measured 

signals in the presence of strong noise is difficult. The development and study of advanced 

signal processing methods are necessary to process the measured signals. Recently, signal 

processing methods, such as short-time Fourier transform (SHFT), wavelet transform, and 

Hilbert-Huang transform (HHT), have been used to process Lamb wave signals successfully 

[3-5], but the time-frequency resolution obtained by these methods is not optimal. Further, they 

do not take into account the dispersion characteristic. Some researchers have used matching 

pursuit method to process monitoring signals. Ruiz-Reyes used matching pursuit method to 

improve ultrasonic flaw detection in nondestructive testing [6]. Hong employed the same 

method to analyze the guided wave signals measured in rod structures [7]. Ajay also utilized 

matching pursuit method using chirplet dictionary to process Lamb wave signals in a plate 
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structure. However, the method does not establish the relationship between the dispersion and 

the chirp rate of the chirplet atom, and the results are not accurate [8]. 

Matching pursuit method with chirplet atom is applied to handle Lamb wave in a plate-like 

structure in the present study. When Lamb wave interacts with boundary or damages, some 

Lamb wave modes are generated due to mode conversion. Distinguishing these Lamb modes is 

necessary to determine the velocities of the different Lamb wave modes. The relationship 

between dispersion and chirp rate of the chirplet atom is established to distinguish Lamb wave 

modes, such as the A0 and S0 modes. 

The current research is organized as follows. In Section 2, matching pursuit method is 

briefly reviewed, and a fast implementation method is introduced to decompose Lamb wave 

signals. And the feasibility of chirplet atom matching with dispersion pulse is studied. In 

Sections 3, the effectiveness and accuracy of the proposed method are verified by a simulation 

and experiment on isotropic plate and honeycomb sandwich composite structures. 

 

2. Matching Pursuit Method 

 

Matching pursuit method is an adaptive signal processing method proposed by Mallat and 

Zhang in 1993 [9]. Around the same time, Qian and Chen independently developed a similar 

algorithm [10]. The method projects the signal onto a large and redundant dictionary of 

waveforms and chooses a waveform that is best adapted to approximate part of the waveform 

from the dictionary. Compared with other time-frequency signal processing methods, matching 

pursuit method possesses some advantages, such as its high time-frequency resolution, 

robustness to noise, lack of interference, and high computational efficiency. Assuming signal f(t) 

belongs to Hilbert space L
2
(R), matching pursuit method can decompose signal f(t) into a linear 

combination of several time-frequency atoms (with R
0
f = f) with the following steps: 

(a) The best atom gr is chosen from dictionary D: 

1
arg max ,

m

m
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(b) After step (a), the residual signal can be obtained by: 
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the residual signals are repeated until a fixed number of iterations or a threshold of the residual 

signals is reached; signal f(t) can then be decomposed into: 
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where M is the number of iterations. During decomposition, R
m
f and grm are orthogonal, and the 

decomposition follows the energy conservation law. 

In the current work, the dictionary of chirplet atoms gr(t) is used in matching pursuit 

method: 
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where ( )
21 4

 = 2 ,
t

g t e
π−

 ( )  = 1,g tγ  index γ = (s, u, ω0, c); s is the dilation parameter; u is 

the translation parameter; ω0 is the center of the angular frequency; and c is the chirp rate. The 

angular frequency ω(t) = ω0 + c(t – u) and varies with time. The chirplet atom and its 

Wigner-Ville distribution (WVD) are shown in Fig. 1. 
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Fig. 1. Chirplet atom and its WVD 

 

A narrow bandwidth signal is chosen as excitation signal, and scale s and angular frequency 

ω0 of the excitation signal are determined beforehand. Therefore, matching pursuit method can 

be simplified to process the monitoring signals. Index γ has four parameters, s, u, ω0, and c, 

where s and ω0 are already determined; only parameters u and c need to be defined. The method 

can be repeatedly simplified using a two-phase algorithm. 

(a) The chirp rate c0 = 0 is defined in chirplet atom gγ(t). With the chirplet atom equivalent to 

the Gabor atom, the best atom is chosen using matching pursuit method, and the initial values 

are obtained, such as time u0, amplitude A0, and phase 0.φ  The inner product of the signals and 

the chirplet atoms can be efficiently calculated in the frequency domain for all translation 

( ) ( ) ( ) ( ) ( ) ( )
0 0, , ,  , 0, , ,   = ,s u c s cf t g t f u g uω ω∗  where ∗  denotes the convolution which can 

be implemented using FFT. 

(b) The nonlinear least square algorithm [11] is used to determine the optimal values of u1 and 

c1, using u0 and c0 as the initial values: 
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Once the index is determined, the exact value of amplitude A1 and phase 1φ  can be 

determined from the inner product. The algorithm is repeated until a fixed number of iterations 

or a threshold of the residual signals is reached. When decomposition of the signal is completed, 

information, such as the time of flight of the reflected waves and the dispersion values, can be 

obtained. Monitoring signals can be reconstructed using index γ1, amplitude A1, and phase 1φ . 

The dispersion characteristic makes the elastic wave pulse distorted when it propagates, the 

amplitude small, and the waveform of the signal spread in the time domain. The excitation 

signal, which is a narrow bandwidth signal modulated by a Gaussian window, is expressed as: 
2

0
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where ω0 = 2πf0, and f0 is the center frequency of the excitation signal. In the frequency domain, 

the excitation signal can be expressed as: 
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When the excitation signal travels along a waveguide for time duration u, its Fourier 

transform can be expressed as: 

0 0( , , ) ( , )( ) ( )
ju

u s sG G e
− ω

ω ωω = ω ⋅
            

(8)
 

where u is the pulse location in the time domain. If the signal is dispersive, the Fourier 

transform of ( )( ) ( )
0u,s , ,D

G ω ω ω  can be expressed as: 

( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

0 00

jD j

u,s, s ,u ,s, ,D
G G e G e

ω ω
ω ωω ω ω ω ω− Φ= ⋅ = ⋅       (9) 

where D(ω) represents the dispersion effect, and phase Φ(ω) = – (D(ω) + uω). The signal in the 

time domain can be obtained by inverse FFT. 

The group delay τ(ω) can be obtained by the derivative of the phase: 

( ) ( )( ) / /d d dD d uτ ω ω ω ω ω= − Φ = +
          

(10)
 

 

 
Fig. 2. Influence of dispersion value on the impulse waveform 

 

A good estimation of D(ω) is very important for the accurate representation of τ(ω). The 

excitation signal is a narrow bandwidth pulse. The relationship between group velocity and 

frequency can be approximated as a linear relationship in a frequency range of narrow 

bandwidth (Fig. 2). The group delay τ(ω) can be approximated as: 

( )0
( ) d uτ ω ω ω≅ − +

             
(11)

 
where d is the dispersion value. The influence of dispersion value d on the pulse waveform is 

shown in Fig. 3. Compared with Eq. (10), function D(ω) can be approximated as:  

( ) ( )0
/dD d dω ω ω ω≅ −

             
(12)

 
The change in phase between ( ) ( )

, 0s
G ω ω  and ( ) ( ), , ,s u c

G ω ω , which is the Fourier transform 

of gγ(t), is: 
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The group delay τ(ω) can be expressed as: 
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The dispersion value can be expressed as: 
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( )4 2 2 4
/ 4mpd cs c sπ= +

             
(15)

 
Once d is determined, D(ω) can be found. The influence of dispersion on the waveform of 

the signals is obtained. Therefore, the chirplet atom can be used to approximate the distorted 

pulse.  

 

3. Experimental Study 

 

3. 1. Damage Location for Isotropic Structure 

 

The proposed method is verified in this section using an experimental study. An 

experimental setup containing an NI-5412 arbitrary waveform generator and an NI-6115 

multifunction data acquisition card is established for signal generation and acquisition. The 

experiment is controlled using a program written by LabVIEW. The specimen is an aluminum 

plate whose dimensions are 100 cm × 100 cm × 0.1 cm. A pair of piezoelectric patches whose 

diameters are 12 mm is bonded on the plate for excitation and sensing. A photograph of the 

experimental setup is shown in Fig. 3(a), and the schematic diagram of the experiment is 

depicted in Fig. 3(b). The center frequency of the excitation signal is 200 kHz, the frequency at 

which the actuator and sensor will mainly excite and sense the S0-mode wave. Two bolts whose 

diameters are 1 cm are bonded on the plate to model the defects, and the distances between the 

defects and the sensor are 17 and 20 cm, respectively. 

Damage information can be obtained from the difference between the baseline and damaged 

signals. After the baseline signals are recorded under a no-defect condition, the bolts are 

attached to the structure to model the defects, and the damaged signals under the condition of 

two defects are measured. The differences between the baseline and the damaged signals are 

shown in Fig. 3(c); only the signals after the excitation are shown, and the pulse contains two 

scattering signals reflected from the two defects. The reconstructed signals completed using 

matching pursuit method are shown in Fig. 3(c); the residual signals whose amplitudes are very 

small are shown in Fig. 3(c). The time–frequency energy distribution obtained by matching 

pursuits is shown in Fig. 3(d), especially the two overlapped scattering signals that can be 

resolved by matching pursuit method. Other signal processing methods, such as wavelet 

transform, cannot distinguish the overlapped signals (as demonstrated in Fig. 3(e)). The results 

of the analysis are listed in Table 1. The dispersion values of the two pulses are positive, and 

their modes are the S0 mode. The errors of location are 0.95 % and 4.65 %, respectively. 

 
Table 1. Lists of experimental results 

Atom 
t0 

µs 

c 

Hz·s-1 (E-10) 

d 

 (E-11) 

Energy 

 (E-7) 
Mode 

Actual 

distance 

(cm) 

Distance from MP 

(cm) 

Error 

% 

1 75.6 1.66 0.24 0.61 S0 20 20.19 0.95 

2 66.6 2.74 0.26 0.19 S0 17 17.79 4.65 

 

The method can determine the radial distance of the defect. Using three pairs of transducers 

to pinpoint the location of the defect in a plate-like structure, this defect is found at the 

intersection of three circles. 

 

3. 2. Location of Impact Damage in a Honeycomb Sandwich Composite Structure 

 

A honeycomb sandwich composite structure, widely used in aircrafts, is an anisotropic 

structure characterized by light weight and high strength. However, it is generally poor at 

resisting impact damage. In this section, a damage monitoring method based on Lamb wave and 
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matching pursuit method is presented to detect the impact damage in a honeycomb sandwich 

composite structure. The specimen is an airplane fin control surface containing two honeycomb 

sandwich composite plates and an aluminum chuck. The honeycomb sandwich composite is 

constructed from two thin carbon composite sheets bonded to a paper honeycomb core. The 

specimen and the experimental setup are shown in Fig. 4(a). In the experiment, a drop hammer 

with impact energy of 10 J is used to strike the structure. A piezoelectric patch array with 

dimensions of 16 cm × 20 cm, diameter of 1.2 cm, and thickness of 0.1 cm is bonded to the 

specimen to actuate and sense Lamb wave. A rectangular coordinate system is established with 

point O as origin, path 1-2 as the x-axis, and path 1-4 as the y-axis (Fig. 4(b)). 

 

    
      (a) The specimen and measurement instrument     (b) The schematic diagram of the specimen 
 

 
(c) The measured signals and the reconstructed signals 

 

 
(d) The time-frequency energy distribution 

obtained by matching pursuits method 
(e) The wavelet scalogram of the experimental 

result 
Fig. 3. Experimental setup and the results 
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      (a) Photograph of the experimental setup                  (b) Sketch of the specimen 

 

 
(c) Group velocity curves at a frequency of 150kHz 

 

 
(d) Signals sensed by PZT S3 before and after impact 

 

 
(e) Difference between the signals sensed by PZT S3 before and after impact 
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(f) The time-frequency energy distribution obtained by the MP method 

Fig. 4. Experimental results of the honeycomb sandwich composite structure 

 

The development of a model to determine analytically the velocity of Lamb wave is difficult 

for the honeycomb sandwich composite structure. In the current research, the velocity of Lamb 

wave in several directions is measured using the experimental method, and the group velocity 

of Lamb wave as it varies with the direction is shown in Fig. 4(c). The average velocity in all 

directions is 5400 m/s at a frequency of 150 kHz. A scattering wave, which is the signal 

difference between undamaged and damaged signals, is generated when Lamb wave interacts 

with the impact damage. The flight time of the scattering signals can be extracted using 

matching pursuit method. The location of the impact damage can be determined by ellipse 

location method [14], and the damage is found at the intersection point of two ellipses, with the 

sensor and actuator as its foci. 

In the experiment, piezoelectric patch S4 is used as the actuator, whereas the other patches 

are used as sensors. The signals sensed by patch S3 before and after the impact are shown in 

Fig. 4(d), and the scattering signals are shown in Fig. 4(e). The flight time of the signals is  

37.2 µs in path 4-3 and 43.0 µs in path 4-1. With the velocity measured by the experiment, two 

ellipses can be obtained. The intersection of the two ellipses is at point (7.2, 14.2) cm (Fig. 5), 

and the distance to the real damage is 0.5 cm. 

 

       
Fig. 5. Ellipse location method 

 

4. Conclusions 

 

Current study has presented a damage location method for plate-like structures based on 

Lamb wave and matching pursuit method with chirplet dictionary. The proposed 

implementation method of matching pursuit can quickly decompose the monitoring signals into 

a linear expansion of several chirplet atoms and can extract useful data, such as the flight time 

of the scattering signals, the dispersion values, and the Lamb wave mode. Compared with other 
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signal processing methods, such as wavelet transform and HHT, the considered method can 

identify the mode and resolve the overlapped pulse reflected from several damages. This result 

has been verified by the experiment. 

(1) The experimental results from the isotropic aluminum plate demonstrate that the method can 

also identify Lamb wave mode and distinguish overlapped pulses.  

(2) The experimental results from the honeycomb sandwich composite structure demonstrate 

that matching pursuit method coupled with ellipse location method can accurately locate the 

impact damage. 
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