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Abstract. The coupling dynamic characteristics of the vibrating system with dual mass are 

analyzed quantitatively. Both the load torque and the coupling torque have three items. Two of 

them are concerned with the translation of the system, and the third item is related to the 

rotation of the system. Through numerical computation, the effects of translation and rotation in 

the system are considered in relation to the self-synchronization. The phase difference of two 

eccentric blocks is caused by the difference of the rated revolution of two motors. The stability 

of the synchronous operation is dependent on the structural parameters of the system, such as 

the mass ratio of two eccentric blocks and the distance between motor and centroid of the rigid 

frame. Simulation is carried out to verify that the system can be synchronized and the model 

can ensure the stability of synchronization if the parameters of the system meet the conditions 

of synchronous implementation and stability. Simulations are also performed for the case of 

self-synchronization of two motors with different rated revolutions. 
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Introduction
 
 

Blekhman I. I. [1-5] developed a formal, algorithmic guide to deriving the conditions for the 

existence and stability of self-synchronized motions of unbalanced rotors on mechanical 

systems, which laid the foundation for the research of self-synchronization theory. In the first 

paper, a vibration model has been put forward for studying the vibrating system with dual mass 

based on the self-synchronization theory. And the conditions of synchronous implementation 

and stability are derived by dynamical analysis. Recently, many researchers have already 

contributed to numerical analysis of synchronous characteristics for self-synchronization system. 

Zhang Nan [6] used an omnipotently vibrating machine as a prototype for the synchronous 

experiment to quantitatively discuss the variation rule of each parameter and synchronous 

characteristics about self-synchronization vibrating system at several representative states. 

Wang Degang and Zhao Chunyu [7] used the computer to simulate the process of 

self-synchronization, and the results indicated that the synchronization of vibrating system came 

true in either speed or phase to enable the system to be in a good self-synchronization state. 

In this paper, the quantitative analysis of the coupling dynamic characteristics of the 

vibrating system with two masses is considered. During operation the system exerts an extra 

torque on each motor, which can be divided into load torque and coupling torque. As mentioned 

in the first part, the load torque reduces the speed of both motors. The coupling torque acts on 

the motor at a higher speed to reduce its angular velocity as the load torque, while it also acts on 

the other motor at a lower speed to speed it up as the driving torque. Finally, two motors reach 

the same speed. Even if the two motors have different revolutions, they can also implement 

self-synchronization with the coupling torque. Specifically, if the coupling torque is high 

enough, two motors reaching the synchronization can maintain the same speed by cutting off 

the power supply of one motor. 

The paper is organized as follows. In Section 2, we analyze the load torque and coupling 



 

885. SELF-SYNCHRONIZATION THEORY OF A DUAL MASS VIBRATING SYSTEM DRIVEN BY TWO COUPLED EXCITERS. PART 2: NUMERIC 

ANALYSIS. LI HE, FU SHIBO, LI YE, ZHAO CHUNYU, WEN BANGCHUN 

 

 

 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. DECEMBER 2012. VOLUME 14, ISSUE 4. ISSN 1392-8716 
1582 

torque which rigid frame acts on two motors. Section 3 describes the simulation method used in 

this paper. In Section 4, the impact of structural parameters on the synchronization is discussed 

and the conclusions are given in Section 5. 

 

Analysis of coupling characteristics of two exciters 

 

When the two motors operate at the steady state, the motion of the system has an effect on 

their toques. The total torque of the motors can be represented as follows: 
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If the system achieves self-synchronization, i.e. 1 2 0,ε ε= =  1LT  and 2LT  can be 

rewritten as: 
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,aχ  1fχ  and 2fχ  are greater than zero. Hence, 1fχ  and 2fχ  as load torques act on 

the two motors to decrease their angular velocity. aχ  acts on the motor with higher speed as 

the load torque to decrease its angular velocity while it acts on the motor with lower speed as 

the driving torque to increase its angular velocity. The load torque relates to the sine effects of 

the phase angles ,xγ  yγ  and .ψγ  Since the damping constants of the system are very small, 

sin ,xγ  sin yγ  and sin ψγ  can be considered to be zero. 1fχ  and 2fχ  are so small that 

their effects on motors can be ignored. The main effect of rigid frame on motors comes from the 

coupling torque .aχ  aχ  represents the effect of motion excited by one exciter on the other 

one due to the motions of the system. 

The coupling torque aχ  consists of three items. Each item involves motor kinetic energy 

2 2
01 0 2,mm r ω  and the sine of phase difference of two eccentric blocks. The three items of aχ  

are related to the motions of the system in the directions of x, y and ,ψ  respectively. Define 

the sum of ctW  and crW  as cW : 
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where ctW  is caused by the translation of the system and crW  is relative to the rotation of the 

system. Fig. 1 shows the relation between cW  and 
2 2

0 0( ).x yl l l l= +  It can be observed from 

Fig. 1 that compared with the translation, the rotation has a greater impact on .cW  

The process of implementing self-synchronization of the two motors is given as follows. At 

the beginning, two motors acquire the same rotating speed quickly due to the driving torque that 

mainly comes from their electromagnetic torques. At the stage of the stable operation, when two 

eccentric blocks excite the motions of the system in x-, y-, z- and ψ -directions, the motions 

have a reaction to the motors concurrently. The result of the interaction is the coupling torque 

.aχ  As the speed of one motor changes, the phase difference between the two motors varies as 

well. aχ  has a positive correlation with phase difference. Thus aχ  acts on the faster motor 

as load torque to decrease its angular velocity and acts on the slower motor as driving torque to 

increase its angular velocity. And ultimately two motors reach the same speed. 

 

 
Fig. 1. Effects of translation and rotation on parameter cW  

 

Calculation of the angular velocity and phase difference 

 

With the electromagnetic torques 1eT  and 2eT  shown in the part 1, angular acceleration in 

the different speed of two motors can be obtained at the beginning. After reaching the steady 

stage, the angular acceleration is determined by the electromagnetic torque, coupling torque and 

tiny disturbance. Selecting the appropriate time interval, we can get the speed simulation curve. 

The steps of this algorithm are summarized as follows: 

Step 1: Input the structural parameters of the vibrating system, such as the mass of rigid 

frame, the mass of two eccentric blocks and the size of the system. 

Step 2: Select time interval δ  and disturbance ,∆  and calculate the angular acceleration 

of two motors according to 1,eT  2 ,eT  ,δ  ∆  and moments of inertia of two exciters. 

Step 3: Calculate angular velocity based on the step 2 until the system reaches steady stage. 

Step 4: Add the stochastic disturbance and assume the two motors have different speeds 1V  

and 2.V  

Step 5: Take into account the electromagnetic torques and update. 

Step 6: If two motors are installed in the mechanism proposed in this paper, proceed to step 

7. Otherwise, return to step 4. 

Step 7: Calculate the phase difference 2α  using the angular velocities of two motors. 
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Step 8: Calculate the coupling torque based on step 6. 

Step 9: Update the angular velocities as a result of the coupling torque. 

Step 10: Return to step 4. 

Step 11: Draw the velocity curve. 

Step 12: Draw the phase difference curve. 

In this paper, the parameters of the vibrating system are as follows: 1 500 kg,m =  

2 100 kg,m =  01 02 10 kg,m m= =  1 m,xl =  0.4 m,yl =  0.15 m,r =  

1560 kN/m,x y fk k k= = =  1 2222.5 kN/rad,k = 2300 kg/m ,J =  1 2000 N s/m,f = ⋅  

700 N s/m,x y ff f f= = = ⋅  0 980 2 / 60 rad/s,mω π= × ×  0.8214 ,yγ = −
�

 1 4.0628 ,γ = − �  

4.7131 .zγ = �  Time-interval is 0.01s, 2000 points are used for the simulation; each step has a 

±5-margin for error. m01 = m02 = 10 kg and 1.η =  Fig. 2 provides the simulation of rotational 

velocities of two motors in their individual operation. Fig. 3 shows the speed difference of two 

motors after their angular velocities reach the steady state. During the initial phase, the speed of 

motor 2 is higher than that of the motor 1, as the electromagnetic torque of motor 2 is bigger 

than that of the motor 1. During the steady state, the two motors keep the speed difference of 

±20 due to the disturbance. The rotational velocities of the two motors are illustrated in Fig. 4, 

while Fig. 5 illustrates their speed difference when they are installed in the mechanism. Fig. 6 

shows the phase difference of two eccentric blocks when the two motors operate individually 

and in the coupling condition. Obviously, the rotational velocities of the two motors installed in 

the mechanism fluctuate with the disturbance, but the amplitude of the speed difference is 

nearly the same and the phase difference is much smaller in comparison with that in individual 

state. In other words, the two motors regain the same speed immediately through the reaction of 

the rigid frame, provided that they are installed in the mechanism proposed in this paper. When 

the velocities change, two motors can implement the synchronization very well. 

 
Fig. 2. Rotational velocities of the two motors operating individually 

 
Fig. 3. Speed difference of two motors operating individually 
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Fig. 4. Rotational velocities of two motors installed in the mechanism 

 
Fig. 5. Speed difference of two motors installed in the mechanism 

 
Fig. 6. Phase difference between the two eccentric blocks 

Calculation of the self-synchronous stability 

In the first part, the condition for the stability of the synchronous operation is obtained. The 

characteristic equation for eigenvalue λ  is as follows: 

3 2
1 2 3 0c c cλ λ λ+ + + =              (4) 

where 1 0 1 24 ,mc h hω=  2 0 2 02 ,mc h hω=  3 0 3 02 .mc h hω=  

The stability condition of the system can be expressed as follows: 

0 1 3 1 2 0 30, 0, 0, 4 0.h h h h h h h> > > ⋅ ⋅ − ⋅ >          (5) 
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To investigate the stable domain of the system, 0( / )m mr r m M=  and 0l  are defined as 

variable parameters, which range 0~0.1  and 0~20 m,  respectively. Substitute mr  and 0l  

into Eq. (6) to satisfy 0 0,h =  1 0,h =  1 2 0 34 0h h h h⋅ ⋅ − ⋅ =  and 3 0.h =  Fig. 7 indicates the 

stable domain of synchronization in 0mr l−  plane and the curve of maximum value 0l  when 

the values of η  are 0.2, 0.5 and 1, respectively. 

 
Fig. 7. Stability domain of synchronization in 0mr l−  plane 

It can be observed from Fig. 7 that with the increase of the mass ratio of the eccentric block 

and system, the stable region of the system shrinks. It also demonstrates that as the system size 

increases and the structural being more symmetrical, the stability becomes worse. 

 

Calculation of the response of the system 

 

In the first part, when the system reaches the steady stage, the response of the system can be 

given by: 
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Substituting the system parameters into Eq. (6), we obtain the response of the vibrating 

system. Fig. 8 shows the displacement in x-direction of the body 1, the displacement in 

y-direction of the body 1, the displacement in x-direction of the body 2 and the displacement in 

ψ -direction of the body 1. The red line indicates the operational state of the two motors 

installed in the mechanism proposed in this paper, while the blue line indicates the operational 

state of two motors operating individually. 

As indicated in Fig. 8, in the directions of y and ,ψ  the system fluctuates less comparing 

with the motors running separately, when the vibrating parameters of the system meet the 

synchronous conditions. The simulation results also verify the correctness of the theoretical 

analysis. 

Impact of system parameters 

The condition of implementing the synchronization is: 
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Fig. 8. Results of the simulation: (a) displacement in x-direction of body 1; (b) displacement in y-direction 

of body 1; (c) displacement in x-direction of body 2; (d) displacement in ψ -direction of body 1 

 

It can be seen from the Eq. (7) that the two motors can implement the self-synchronization 

even though their rated angular velocities are distinct. If the angular velocities of the two motors 

are assumed to be 1ω  and 2 ,ω  respectively, the angular velocity of the synchronous 
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operation 0mω  must satisfy: 1 2 0 1 2min( , ) max( , ).mω ω ω ω ω< <  

In this paper, the allowed maximum of diffT  is 101.86 N m.⋅  Fig. 10 provides 

synchronizing characteristics when 1 980 r/minω =  and 2 940 r/min.ω =  In this case 

50.33N m 101.86 N mdiffT ≈ ⋅ < ⋅  and the system can implement the self-synchronization. 

 

 
Fig. 9. Synchronizing characteristics in the different rated rotational velocities 

 

 
Fig. 10. Phase difference of two motors in different rated rotational velocities 

 

Before the time t reaches 500 s, the two motors operate individually and the difference of 

rotational velocity is about 40 r/min. When t is in the interval of (500, 1000), the coupling 

torque is added, and the coupling speed is approximately 960 r/min. Fig. 10 illustrates the phase 

difference of the two eccentric blocks after the system achieves self-synchronization, 

2 30 ,α ≈
�
 and 2 2

0 0 sin 2 46.86.m cm r Wω α ≈  Compared with the theoretical results, its error is 

lower than 10 %. Fig. 11 presents synchronizing characteristics when 1 980 r/minω =  and 

2 880 r/min.ω =  Here 119.62N m 101.86N m,diffT ≈ ⋅ > ⋅  Eq. (7) cannot meet, and the system 

cannot implement the self-synchronization. 
 

 
Fig. 11. Non-synchronizing characteristics in different rated rotational velocities 
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Fig. 12. Phase difference of two motors of non-synchronization 

 

After the two motors reach self-synchronous state, an interesting phenomenon demonstrates 

that even if the power supply of one motor is cut off, the synchronous motion of the two motors 

can continue due to the coupling torque. This phenomenon can be explained by using Eq. (7). 

With one motor stops the power, the electromagnetic torque of this one is zero. In this paper 

51.3 N m 101.86 N mdiffT ≈ ⋅ < ⋅  and the coupling torque is big enough to overcome the load 

torque. This specific synchronous rotation using only one power supply is called vibratory 

synchronization transmission [8]. Fig. 13 illustrates this case. 
 

 
Fig. 13. Synchronizing characteristics of vibratory synchronization transmission 

 

At t = 500 s the power supply of one of the two motors is cut off. The rigid frame transmits 

the driving torque from the motor (with the power supply) to the other, so they can still 

synchronize and the coupling speed is about 960 r/min. Fig. 14 provides the phase difference of 

vibratory synchronization transmission 2 20 .α ≈ �  
 

 
Fig. 14. Phase difference of vibratory synchronization transmission 

 

Conclusions 

 

A mechanism is proposed to analyze the coupling dynamic characteristics of the vibrating 

system quantitatively. The motions of the system operating at the stable stage are excited by the 

two eccentric blocks, while simultaneously these motions in the x-, y-, z- and ψ - directions 

react to the motors. As a result, this interaction produces the coupling torque including three 
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items, among which two items are concerned with the translation and another item is related to 

the rotation. As the speed of one motor changes, the phase difference of the two motors changes 

as well. The coupling torque has a positive correlation with the phase difference. Thus the 

coupling torque acts on the motor with higher speed as load torque to decrease its angular 

velocity while it acts on the motor with lower speed as driving torque to increase its angular 

velocity. Ultimately the two motors reach the same speed. The phase difference of two eccentric 

blocks is caused by the difference of the rated revolution of two motors. When the phase 

difference reaches a certain value, the speeds of two motors are the same and the system 

implements self-synchronization. If the two motors and eccentric blocks are completely 

symmetrical, the motions in y- and ψ -directions of the system can be neglected. The system 

can only implement the horizontal movement.  

When the phase difference is 90°, if the coupling torque is smaller than ,diffT  the 

self-synchronization cannot be achieved. But at this time, the two motors are still influenced by 

the motions of the rigid frame and their angular velocities have a large cyclical variation. With 

the calculation for the stable domain of synchronization, it indicates that the stability depends 

on the structural parameters of the system, i.e. the mass ratio of the two eccentric blocks and the 

distance between the motor and the centroid of the rigid frame. The smaller the mass ratio and 

the distance are, the stronger is the ability of maintaining synchronous stability. The 

phenomenon, dubbed the vibratory synchronization transmission, is simulated. It demonstrates 

that even if the power supply of one motor is cut off, the synchronization of the two motors will 

not be influenced. 
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