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Abstract. Nonlinear natural oscillations of beams made from functionally graded material 

(FGM) are studied in this paper. The equation of motion is derived according to the Euler-

Bernoulli beam theory and von Karman geometric nonlinearity. Subsequently, Galerkin’s 

solution technique is applied to obtain the corresponding ordinary differential equation (ODE) 

for the FGM beam. This equation represents a kind of a nonlinear ODE containing quadratic and 

cubic nonlinear terms. This nonlinear equation is then solved by means of three efficient 

approaches. Homotopy perturbation method is applied at the first stage and the corresponding 

frequency-amplitude relationship is obtained. Frequency-amplitude formulation and Harmonic 

balance method are then employed and the consequent frequency responses are determined. In 

addition, Parameter Expansion Method is utilized for evaluating the nonlinear vibration of the 

system. A parametric study is then conducted to evaluate the influence of the geometrical and 

mechanical properties of the FGM beam on its frequency responses. Different types of material 

properties and boundary conditions are taken into account and frequency responses of the 

system are evaluated for different gradient indexes. The frequency ratio (nonlinear to linear 

natural frequency) is obtained in terms of the initial amplitude and compared for different 

materials and end conditions.  

Keywords: frequency-amplitude relationship, FGM beams, nonlinear vibration, Euler-Bernoulli 

beam. 

Introduction  

The idea of functionally gradient materials was initiated by a team of researchers in Japan to 

avoid effect of thermal stresses. Thermal stresses are created as a result of direct bonding of 

metals and ceramics in high temperature applications. They can generate interface cracks, 

debonding at hetero-interfaces, and result in delimitation of the over-layer of the ceramics. 

Initially and originally, concept of FGM materials was employed for creating fuselage exterior 

and engine materials. Then, it was utilized for improving the figure of merit of thermoelectric 

materials [1]. FGMs were also employed in optoelectronics systems such as antireflective layers, 

fibers, GRIN lenses, and other passive elements made from dielectrics [2]. This concept was 

then widely employed to improve various mechanical and electrical systems. For instance, 

graded thermoelectric and dielectric elements [3], graded composite electrodes for solid oxide 

fuel cells [4], and piezoelectrically graded materials were employed for broadband ultrasonic 

transducers [5]. This idea was also applied for high current connectors [6]. Recently, vibration 

and dynamic analysis of functionally graded materials has attracted several researchers. 

Vibration of FGM cylindrical shells was analyzed by Loy et al. [7] in 1995. They have 

employed Love’s shell theory and Rayleigh–Ritz method for obtaining strains displacements and 

eigenvalue governing equation. Dynamic response of initially stressed functionally graded 

rectangular thin plates was investigated by Yang and Shen [8]. The results of investigation are 

presented in Table 1. They conducted a parametric study on the effects of constituent volume 

fraction index, foundation stiffness, plate aspect ratio, the shape and duration of impulsive load 

as well as the initial membrane stresses on the dynamic response of the FGM plates. Large 
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amplitude vibration of thermo-electro-mechanically stressed FGM laminated plates was 

analyzed by Yang et al. [9]. They used differential quadrature method for predicting dynamic 

behavior of the laminated rectangular plates with two opposite clamped edges. Nonlinear 

vibration of initially stressed functionally graded plates was studied by Chen et al. [10]. They 

employed Galerkin’s solution method in conjunction with the Runge-Kutta integration technique 

to obtain frequency responses. Vibration of a simply supported functionally graded piezoelectric 

rectangular plate was investigated by Zhong and Yu [11]. The exact frequency equations of free 

vibration were determined for several numerical examples. Vibration of a functionally graded 

piezoelectric cylindrical actuator based on elastic membrane and shell theories was studied by 

Zhang et al. [12]. The present paper is aimed at analysis of nonlinear oscillations of FGM beams 

for different conditions. Linear vibration analysis of FGM beams has been extensively addressed 

in the literature. For instance, Lu and Chen studied free vibration of orthotropic functionally 

graded beams. They employed hybrid state-space/differential quadrature method for obtaining a 

semi analytical solution [13]. Wei et al. [14] provided an analytical approach to solve free 

vibration of a cracked functionally graded beam including axial loading, rotary inertia and shear 

deformation. Nonlinear dynamic behavior of a functionally graded Timoshenko beam traversed 

by a moving load was analyzed by M. Sismek [15]. Effects of large deflection, material 

distribution, traveling speed and excitation frequency on the beam displacement, bending 

moment were investigated. Pradhan and Murmu [16] employed differential quadrature method 

and studied thermo-mechanical vibration of a FGM sandwich beam on an elastic foundation. 

More recently, Ke et al. [17] employed direct numerical integration method and analyzed 

nonlinear free vibration of a FGM beam with different end supports. Surveying the literature 

shows that due to the limitation and complexity of the solution procedures, there are very few 

publications on nonlinear vibrations of FGM beams. Furthermore, a large number of researchers 

have investigated diverse parameters in FGM structures. Interested readers can study these 

valuable works for obtaining information about recent trends in analyzing of FGM structures 

[18-22].  In present study, four straightforward analytical approaches are presented for frequency 

analysis of the nonlinear FGM beams. Homotopy Perturbation method, frequency amplitude 

formulation, Harmonic balance method and Parameter expansion method are employed for 

deriving the natural frequency of the nonlinear FGM beam. Homotopy perturbation method 

(HPM) is one of the recent and strong methods for solving nonlinear problems, developed by J. 

H. He [23]. This method has been already employed for different nonlinear equations by a 

number of researchers [24-26]. Frequency amplitude formulation (FAF) is another strong and 

straightforward solution technique suggested by J. H. He [27]. Several researchers [28-31] have 

utilized this method so far to solve nonlinear conservative oscillatory systems such as 

generalized Duffing equation, relativistic oscillator, Duffing harmonic, and plasma Physics 

equations. The third solution method i.e. harmonic balance (HBM), is one of the classic and 

prominent methods for solving nonlinear problems and has been already developed by many 

researchers [32-34]. Besides, Parameter expansion method is exerted for frequency analyzing of 

this system. Parameter expansion is a strong method which has been used by several researchers 

for analyzing various nonlinear systems [35-38]. Furthermore, a number of novel and potent 

analytical approaches have been recently proposed and applied for solving nonlinear problems 

[39-42]. In this paper, after derivation of the governing equation of motion for a nonlinear FGM 

beam, Galerkin technique is applied for extracting the corresponding nonlinear ordinary 

differential equation. Subsequently, three different approaches (HPM, FAF and HBM) are 

employed for determination of frequency responses of the FGM beam. A parametric study is 

carried out and influences of the material property variation index on the frequency responses 

are studied. Furthermore, different types of boundary conditions are examined, and the 

consequent natural frequencies of the system are obtained. Frequency ratio for different types of 

materials and different end conditions are plotted versus the initial amplitude. Eventually, the 
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exact solutions for nonlinear differential equation are numerically obtained and accuracy of the 

proposed analytical methods is evaluated. 

 

1. Formulation 
 

Geometry of a FGM beam is illustrated in Fig. 1. Nonlinear differential equation of motion is 

presented for the beam in this section. 

 
Fig. 1. Geometry of an FGM beam 

 

By using Hamilton’s principle, the equations of motion can be derived as [17]: 
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The stiffness components and inertia related terms are defined to be:  
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If the axial inertia is neglected, Equation (1) gives: 
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For beams with immovable ends, integrating (5) with respect to x leads to:  
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From (3b) and (5), bending moment can be re-expressed in terms of the deflection as: 
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Combining Equations (1), (2), (5) and (8) yields: 
2 4 2 2
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11
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Introducing the following dimensionless quantities [17]: 
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where 110A  and 10I  are taken as the values of 11A  and 1I  of a homogeneous beam. Equation (9) 

can be reconstructed in dimensionless form as: 
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The first order Galerkin’s solution can be expressed as: 

( , ) ( ) ( )w uξ τ τ ψ ξ= ,    (13) 

where ( )u τ  is the time dependent function to be determined and ( )ψ ξ  is the linear fundamental 

vibration mode. Substituting Eq. (13) into Eq. (11) and applying Galerkin’s procedure yield to 

the corresponding second order nonlinear ordinary differential equation:  
2 3 0a b cu u u uγ γ γ+ + + =ɺɺ ,    (14) 

,  ,  a b cγ γ γ  have been accordingly defined in Appendix 1.  

 

2. Solution Procedure 

 
We first consider the corresponding auxiliary equations [31]: 

for ( 0u ≥ ) 
2 3sgn( ) 0u u u u uα β γ+ + + =ɺɺ ,

    (15) 

and for ( 0u ≤ ) 
2 3sgn( ) 0u u u u u .α β γ+ − + =ɺɺ     (16) 

Theses auxiliary equations are discussed in Appendix 2. 

 

2. 1. Homotopy Perturbation Method  

 

In Eq. (15), let 
aω  be the initial angular frequency. We construct a homotopy of: 

2 2 3(1 ) ( ) [ sgn( ) ] 0a- p u u p u u u u uω α ω α β γ+ + + + + =ɺɺ ɺɺ ,  (17) 

where [0,1]p∈  is an embedding parameter. When 0p = , Eq. (17) is a simple harmonic 

equation of: 

0, (0) and (0) 0.u u u a uα+ = = =ɺɺ ɺ    (18) 

The power series of the homotopy perturbation parameter p is defined to be: 
2

0 1 2u u pu p u ....= + + +     (19) 
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2

1 2a p p ....ω ω ω ω= + + +     (20) 

Substituting Eqs. (19) and (20) into Eq. (17) and equating the terms with the identical powers 

of the embedding parameter p, we can obtain a series of linear equations. The initial 

approximate is given by:  

0 0 0u u .+ =ɺɺ      (21) 

With initial conditions 0 ( )u a a=  and 0 ( ) 0u a =ɺ , the first approximation is given by: 

2 2 2 3

1 1 0 0 0 0 0 0 0( ) sgn( ) 0a u u u u u u u u u .ω α α ω α β γ+ − − + + + + =ɺɺ ɺɺ ɺɺ   (22) 

The solution of Eq. (21) is simply given by: 

0 cos .u a tω=      (23) 

Substituting Eq. (23) into Eq. (22) gives:  
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Using the following expansion: 

4 1 1
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3 5
( )t t t tω ω ω ω

π
≈ − + ,  (25) 

and eliminating secular terms in Eq. (24) one can arrive to: 

.
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Likewise, one can take the auxiliary equation (16) and construct a homotopy for the initial 

angular frequency:  
2 2 3(1 ) ( ) [ sgn( ) ] 0.bp u u p u u u u uω α ω α β γ− + + + − + =ɺɺ ɺɺ   (27) 

One can similarly arrive to the following solutions: 
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2. 2. Harmonic Balance Method  

 
By substituting Eq. (23) into Eq. (15) and implementing the HBM solution steps, we obtain: 

2 23 8
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Eliminating coefficient of )cos( taa ω  and solving for 2
aω , yields: 

23 8
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a
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Similar procedure is applied to Eq. (16) to reach:  
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In the same way one can arrive to: 
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π
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Corresponding time responses of Eq. (14) are discussed in Appendix 3. 
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2. 3. Frequency Amplitude Formulation 

 

According to the standard procedure of the FAF, the trial functions of 1( ) cosu t a t=  and 

2 ( ) cosu t a tω=  are assumed in positive direction. The frequency-amplitude formulation is 

consequently obtained: 
2 2

2 1 2 2 1

2 1

R R
.

R R

ω ω
ω

−
=

−

ɶ ɶ

ɶ ɶ
    (34) 

Substituting the trial functions into Eq. (15) results in the following residuals: 

( ) ( )( ) 2 2 3 3
1 1 sgn cos cos cosR t a t t a tβ α γ= + ,   (35) 

( ) ( ) ( )( )2 2 2 3 3
2 2 cos sgn cos cos cos .R t a t a t a t a tω α ω ω ω α ω= − + +  (36) 

The above residuals can be represented in the forms of following weighted residuals: 
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After substitution of Eqs. (37)-(38) into Eq. (34) and implementing a number of 

mathematical simplifications one can reach: 

28 3

3 4
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π
= + + ,    (39) 

28 3
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3 4
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π
= − +     (40) 

As a primary conclusion, it may be emphasized that the three different approaches give the 

same result for the nonlinear frequency amplitude relationship. 

2. 4. Parameter Expansion Method 

 

The new form of Eq. (15) is constructed based on the Parameter Expansion Method as: 

2 3
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We substitute Eq. (42) into Eq. (43) and then obtain: 
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2 2 3

1 2 0 1 2( ) ( ) 0c c ... u u u ... .ε ε γ ε ε+ + + + + =  

By equating the terms having the same identical powers of ε  one can arrive at:  
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Inserting Eq. (23) into Eq. (44) gives: 

2 2 2
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u u a t a a t b a t a t
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By considering the first approximation when 1=ε : 

0 1

1 1 1
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,

1, 1, 1,

0

u u u
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.ω ω
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= = =
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
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Using Eqs. (45)-(46) and eliminating secular terms in Eq. (46) we obtain: 

28 3

3 4

a
a .aω α β γ

π
= + +     (47) 

By using the same procedure for Eq. (16), Eq. (48) is obtained to be frequency-amplitude 

relationship: 

28 3

3 4

b
b .

b
ω α β γ

π
= − +     (48) 

 

3. Discussion 

 
In this section, a parametric study is carried out to further investigate how end conditions and 

type of FGM can influence nonlinear dynamic behavior of the beam. Nonlinear natural 

frequency to linear one is defined to be the frequency ratio. Values of analytical frequencies are 

tabulated with respect to the gradient index and various boundary conditions. Fig. 2 presents the 

frequency ratio for an exponentially varying material property and hinged-hinged boundary 

conditions. Also, Figs. 3-4 show the frequency ratio for the same material and clamped-clamped 

and clamped-hinged boundary conditions, respectively. 

  

 
Fig. 2. Frequency ratio vs. amplitude for exponentially varying material properties 

(hinged-hinged boundary condition) 
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It is observed that frequency ratio increases by increasing the initial amplitude of oscillation. 

Comparison of Figs. 2-4 indicates that for a given point, the value of the ratio is larger for 

hinged-hinged boundary condition when compared to other conditions. In other words, natural 

frequency of a hinged-hinged beam is further influenced in large amplitude vibration. Figs. 5-7 

illustrate the same curves for power-law material property distributions.  

 

 
Fig. 3. Frequency ratio vs. amplitude for exponentially varying material properties 

(clamped-clamped boundary condition) 

 

 
Fig. 4. Frequency ratio vs. amplitude for exponentially varying material properties 

(clamped-hinged boundary condition) 

 

 
Fig. 5. Frequency ratio vs. amplitude for power-law material property distributions 

(hinged-hinged boundary condition) 
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Again it is observed that for a given point, the frequency ratio is larger for the hinged-hinged 

boundary conditions. Furthermore, it can be concluded that, for a certain point, by increasing the 

value of gradient index, the frequency ratio decreases. 

 

 
Fig. 6. Frequency ratio vs. amplitude for power-law material property distributions 

(clamped-clamped boundary condition) 

 

Table 1 lists the values of frequencies for different parameters and boundary conditions. The 

exact period of the equation response can be obtained by elliptical integration as: 

0
2 2 3 3 4 4

0
2 2 3 3 4 4

2

2 1
( ) ( ) ( )

3 2

2

2 1
( ) ( ) ( )

3 2

a

b

dx
Tex

a x a x a x

dx
.

b x b x b x

= ∫
− + − + −

+∫
− + − + −

   (49) 

 
Table 1. Comparison between exact and approximate nonlinear frequency for A = 1    

 

Hinged-Hinged Clamped-Clamped Clamped-Hinged 

Exponential/power 

law 
Exactω  

eApproximatω
 (Relative 

error %) 

Exactω  
eApproximatω
 (Relative 

error %) 

Exactω  
eApproximatω
 (Relative   

error %) 

2 1 0.2E E =  0.29754 
0.30035 

(0.94727) 
0.47993 

0.48138 

(0.30262) 
0.39006 

0.39256 

(0.64023) 

2 1 1.0E E =  0.31775 
0.32102 

(1.02880) 
0.49955 

0.50084 

(0.25796) 
0.41018 

0.41277 

(0.63229) 

2 1 5.0E E =  0.33162 
0.33548 

(1.16351) 
0.51993 

0.5099 

(1.092) 
0.42712 

0.41311 

(0.73458) 

0.3n =  0.16117 
0.16278 

(1.00116) 
0.25625 

0.25691 

(0.25372) 
0.20945 

0.21074 

(0.61709) 

1.0n =  0.19225 
0.19419 

(1.00750) 
0.30567 

0.30647 

(0.26237) 
0.25002 

0.25159 

(0.62784) 

3.0n =  0.23573 
0.23816 

(1.03386) 
0.37201 

0.37303 

(0.27324) 
0.30545 

0.30743 

(0.64856) 

 

It is obvious that values of frequencies increase by increasing the gradient index. Frequency 

value of a certain boundary condition and amplitude for exponential gradient index is larger than 

power law gradient index. It is also determined that for a given gradient index and amplitude, the 

value of frequency for the clamped-clamped boundary condition is more than other kinds of 

boundary conditions. The obtained relative errors disclose the fact that the employed methods all 
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are fairly reliable for nonlinear vibration analysis of a FGM beam with conventional boundary 

conditions. 

 

Conclusions 

 
Large amplitude vibration of a FGM beam was formulated based on the von Karman theory. 

Galerkin’s method was applied to derive the corresponding nonlinear vibration equation of the 

system. Three different solution methods, namely homotopy perturbation, frequency amplitude 

formulation and harmonic balance, were employed to solve the supporting nonlinear differential 

equation. A comprehensive parametric study was carried out to further identify the natural 

behavior of the dynamic system. The following conclusions can be listed: 

1) For the given initial amplitude, the frequency ratio for a hinged-hinged boundary condition is 

larger in comparison with the other types of boundary conditions. This means that in this case, 

the difference between linear and nonlinear natural frequency is enhanced. 

2) For the given initial amplitude, increase of value of gradient index leads to frequency ratio 

increase. 

3) By increasing the initial amplitude, the nonlinear natural frequency increases in a hardening 

pattern. 

4) In this dynamic system, Homotopy perturbation method, Harmonic balance method and 

frequency amplitude formulation give the same result in terms of the final frequency-amplitude 

relationship.  

5) Accuracy of the proposed solution methods is sufficiently reliable for vibration analysis of 

FGM structure even for large amplitudes and presence of strong nonlinearity. 

6) In the case of FGM beam with power law property variation, one can sort the relative error in 

different boundary condition to be: Relative error %: C-C < C-H < H-H. 

 

Appendix 1. 

 

The coefficients ,  ,  a b cγ γ γ  in Equation (14) are defined as: 

2 41
0

4
00

a

d d
d

d

η ψ
γ ψ ζ

ζ
= −

Λ ∫ ,    (1.1) 

2 2 21 1
11

2 2
0 00

( )b

b d d
d d

d d

η ψ ψ
γ ζ ψ ζ

ζ ζ
=

Λ ∫ ∫ ,   (1.2) 

2 21 1
211

2
0 00

( ) ( )c

a d d
d d

dd

η ψ ψ
γ ψ ξ ξ

ξξ
=

Λ ∫ ∫ ,   (1.3) 

1

0
0

I dψψ ξΛ = ∫ ,     (1.4) 

where 
2

la ωγ = . The values of these coefficients for different FGM beams are listed in the 

following Table 2. Let ,  ,  .a b cγ α γ β γ γ= = =  

 

Appendix 2. 

 

The system of Eq. (14) oscillates between [ ],b a−
 
for positive ,a b , when u a=  and u b=  

one has 0u =ɺ . Also, a  is given by initial condition and b  indicates unknown amplitude in 

negative direction to be determined. Setting , ,a b cγ α γ β γ γ= = =  and multiplying uɺ  on both 

sides of Eq. (14): 
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2 2 3
0uu uu u u u u .α β γ+ + + =ɺɺɺ ɺ ɺ ɺ     (2.1) 

 

Table 2. Dimensionless coefficients 2 2
( 10 ), ( 10 )a bγ γ− −× ×  and 2

( 10 )cγ
−×  [17] 

H-H C-C C-H Exponential/ 

power law 
   aγ            bγ            cγ     aγ        bγ        cγ     aγ            bγ           cγ  

2

1

0 .2
E

E
=  3.2884 -2.9732 9.4166 14.383 0.0 11.720 7.0359 -2.2134 12.224 

2

1

1 .0
E

E
=  3.1709 0.0 9.5126 16.294 0.0 11.720 7.7383 0.0 12.400 

2

1

5 .0
E

E
=  3.2884 -2.9732 9.4166 14.383 0.0 11.720 7.0359 -2.2134 12.224 

0.3n =  0.8417 -0.1384 2.4821 4.3057 0.0 3.0591 2.0464 -0.1016 3.2354 

1 .0n =  1.1938 -0.2935 3.5903 6.0727 0.0 4.4265 2.8889 -0.2155 4.6796 

3 .0n =  1.7433 -0.3617 5.4284 8.8965 0.0 6.6912 4.2300 -0.2656 7.0755 

 

By integrating the above expression one can arrive at: 

2 2 3 41 1 1 1

2 2 3 4
u u u u Cα β γ+ + + =ɺ ,   (2.2) 

in which C is the integration constant. For the conservative system and substituting the 

conditions that 0u =ɺ  when u a=  and u b=  one has: 

2 3 4 2 3 41 1 1 1 1 1
.

2 3 4 2 3 4
a a a ab b bα β γ β γ+ + = − +   (2.3) 

Solving the above equation, the exact value of b can be obtained for the given values of 

,  ,  α β γ  and a . 

 

Appendix 3. 

 

The first approximate frequency, period T and the corresponding periodic solution u(t) of Eq. 
(14) are eventually presented by:  

2 2
,  

2

a b
a b

a b

T T
T T T

π π
ω ω

+
= = ⇒ =  and  

2

T

π
ω = ,  (3.1) 

cos , when 0 ,
4

( ) cos ( ), when ,
4 4 4 4

cos ( ), when .
2 2 4 2

a
a

a b a a
b

a b a b
a

T
a t t

T T T T
u t b t t

T T T T
a t t T

ω

ω

ω


≤ ≤




= − + ≤ ≤



+ − + ≤ ≤
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  (3.2) 
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