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Abstract. Considering the vertical vibration, caused by floating platform, of top tensioned riser 

(TTR), an analysis method for the coupled vibration of parameter excited vibration and 

vortex-induced vibration is presented in this paper. With the section rotation and shear 

deformation due to the bending large displacement of TTR, a coupled vibration model of 

parameter excited vibration and vortex-induced vibration is put forward. And the 

vortex-induced vibration (VIV) of a TTR for 1500 m water depth is analyzed based on the 

model. The results show that the vertical vibration caused by floating platform increases 

transverse vibration displacement of TTR. 

Keywords: deepwater riser, TTR, vortex-induced vibration (VIV), fluid-structure interaction, 

parameter excited vibration. 

 

1. Introduction 

  

Riser system is the main constituent of ocean infrastructure, and its safety becomes more 

and more important. However, with the depth increasing, the design analysis of riser system 

faces great challenges. Now long flexible deepwater riser vortex-induced models can be divided 

into: empirical models, mixed models and CFD models. A complete description is conducted 

[1]. Hartlen and Currie [2] originally established vortex-induced transverse vibrations model 

and wake oscillator model. After them, many scholars have it amended and improved. For 

example, Skop-Griffin model, Iwan-Blevins model, Landl model, Iwan wake oscillator model, 

Skop-Griffin wake oscillator model, Krent-Nielsen two oscillator model and so on. 

The development of computer provides favorable conditions for the research and application 

of CFD, and makes the numerical method be widely used [3, 4]. The emphasis on 

vortex-induced vibration of deepwater riser with two degrees of freedom (in-line and cross  

flow) is increasing [5]. When transverse bending vibration happened under wave load, the 

vertical vibration caused by floating platform does not only affect the vertical parametrically 

excited vibrations, but also affect the transverse bending vibration, thus there is a coupled 

vibration of parameter excited vibration and vortex-induced vibration. 

 

2. Mathematical model 

 

Long flexible deepwater riser will have parameter excited vibration caused by floating 

platform heave [6], so when analysis the dynamical response of deepwater riser, not only 

consider the transverse excitation, but also consider axial excitation, because axial excitation 

caused by floating platform heave increases transverse vibration amplitude of deepwater riser. 

Fig. 1 displays the principle of parameter excited vibration and D1, D2 denote transverse load 

and axial load. 

Existing deepwater riser bending vibration analysis methods generally doesn’t consider 

transverse displacement caused by vertical displacement; only calculate the bending 
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displacement caused by transverse loads. And the bending vibration equation of deepwater 

drilling riser is as follows: 
4 2

4 2
( ) ( , )

y y y y
EI T m c q x t

x x tx t

∂ ∂ ∂ ∂ ∂
− + + =
∂ ∂ ∂∂ ∂

        (1) 

where y is the transverse displacement, x - the riser axial coordination, t - the time, EI - the 

transverse flexural rigidity of TTR, T  - the tension, it is the function of x and t, namely      

T = T(x, t), m  - the riser mass per unit length, c - the damping coefficient, q(x, t) - the fluid 

force in the transverse direction. 

 

                                 a)                  b) 

Fig. 1. a) Lateral vibration, b) Parametric vibration 

 
Now, with the section rotation and shear deformation due to the bending large displacement 

of TTR, a coupled vibration model of parameter excited vibration and vortex-induced vibration 

is put forward. Its derivation process is as follows.  

Select a micro-element of riser dx  (Fig. 2). According to geometry relation, there is:  

du dx dρ θ− =             (2) 

where ρ is the curvature radius of selected infinitesimal section, θ the section corner, u the axial 

displacement of riser, the top of riser is influenced by platform motion, in this paper, we assume 

the platform on the top of the riser as a particle, and only consider its heave motion. du is the 

axial displacement of selected infinitesimal section. 

 

  

Fig. 2. Riser bending schematic diagram Fig. 3. Geometric description of beam deformation 

with the consideration of the effects of shearing 

 

Take shear deformation (Fig. 3) into account: 
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( )dy dxθ γ= −             (3) 

where γ is the shear strain and GAN /=γ . 

Eq. (2) is expressed as: 

)//(1)/( 22 dxddxyddxdu γρ −=−         (4) 

We know: 1/ρ = –d
2
y/dx

2
, thus Eq. (4) is expressed as: 

dxddxdu /1/1 γρ−=−           (5) 

GAdxdNdxdu // =ρ           (6) 

33 / dxyEIdN = , and we assume 1/κ ρ= , we can get Eq. (7): 

4

4

dx

yd
EI

dx

du
GA =κ            (7) 

As known the beam bending equation under transverse loads is as follows: 

),(
4

4

txq
dx

yd
EI =            (8) 

GAκdu/dx is equivalent to transverse loads, we can add it to the right of Eq. (1) directly, and 

we can get a coupled vibration model of parameter excited vibration and vortex-induced 

vibration: 
4 2

4 2
( ) ( , )

y y y y du
EI T m c q x t GA

x x x t t dx
κ

∂ ∂ ∂ ∂ ∂
− + + = +

∂ ∂ ∂ ∂ ∂
      (9) 

GA is the riser’s shear rigidity, other parameters are same with Eq. (1). 

With the section rotation and shear deformation due to the bending large displacement of 

TTR, the new coupled vibration model is put forward. In the study, riser vibration analysis takes 

the effects of fluid within the riser and riser inner tension effects into account. 

  
3. Fluid-structure interaction vortex-induced forces 

 

The riser under the fluid loads will vibrate, and the vibration of the riser will affect the flow 

field in turn, vice versa, namely fluid-structure interaction. When considering the effects of 

fluid-structure interaction, the structure will have nonlinear damping force and inertia force in 

transverse direction, as the Morison equation [7] expresses: 

4/2/ 2vDCvvDCf mDy
ɺɺɺɺ ρπρ +=′         (10) 

Cross-flow force expression as follows: 

4/2/2/cos)( 22

0 vDCvvDCtwuDCf mDsLy
ɺɺɺɺɺ ρπρωρ ++−=    (11) 

In-line force expression as follows: 

4/2/)(2/cos)( 2

00

2

0 wDCwuwuDCtwuDCf mDsLz
ɺɺɺɺɺ ρπρωρ +−−+′−′=    (12) 

where 
LC  is the cross-flow lift coefficient, 

LC′  - the in-line lift coefficient, D - the riser 
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diameter, 
sω  - the vortex shedding frequency, 

DC  - the drag coefficient, 
mC  - the added mass 

coefficient, vɺ  - the vibration speed of riser in cross-flow direction, vɺɺ  - the vibration 

acceleration of riser in cross-flow direction, wɺ  - the vibration speed of riser in in-line 

direction, wɺɺ  - the vibration acceleration of riser in cross-flow direction. 

 
4. Numerical analysis 

 

Put formula (11) and formula (12) into Eq. (9), and use Newmark – β method incremental 

form to analysis of dynamic response of riser. Newmark – β method is a direct integration 

method, it’s unconditionally stable. 

The full variable form of direct integration method can be expressed as follows: 

[ ] [ ] [ ] ttytt
e

tt
e

t
e

i
iiti

FvKvCvM ∆+∆+∆+ =++∆+ }{}{}{}{ ɺɺɺ        (13) 
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Incremental equations of motion of the system can be expressed as: 

[ ] [ ] [ ]
iiiiiii tytttttt FvKvCvM }{}{}{}{ ∆=∆+∆+∆ ɺɺɺ        (15) 

[ ] [ ] [ ]
iiiiiii tztttttt FwKwCwM }{}{}{}{ ∆=∆+∆+∆ ɺɺɺ        (16) 

where [M] is the mass matrix of system, [C] - the damping matrix of system, we usually use 

Rayleigh damping [Cu] = α[Mu] + β[Ku], in which α and β are Rayleigh damping coefficients, 

their unit are s
-1
 and s, and their value according to: 

 2

1

m n

m n

ϖ ϖα ξ
β ϖ ϖ

  
=    +   

  

and [16] ξ = 0.05, ϖm is fundamental frequency, ϖn is the third order natural frequency. [K] - the 

stiffness matrix of system, {v}
e
, {w}

e
 - the node displacement of element, { vɺ }

e
, { wɺ }

e
 - the 

node speed of element, { vɺɺ }
e
, { wɺɺ }

e
 - the node acceleration of element. 

Due to introducing large deformation, the mass matrix, damping matrix and stiffness matrix 

change with time. So it can be used to solve geometrical and physical non-linear problem. In 

order to improve calculation accuracy, iteration is carried out in every step. Time step is      

dt = 0.01 s. 

 

5. Results and discussion 

 

Based on the new above program, the features of a top tension riser considering large 

deformation are further investigated. The selected TTR is a double casing production riser, its 

external diameter of external pipe is 324 mm, diameter of inner pipe is 222 mm, diameter of 

internal pipe is 114 mm. Based on criterions of bending stiffness equivalent this double-layered 

pipe is equivalent to single-layered pipe. The equivalent inner diameter is 292 mm. Top tension 

coefficient is 1.4. Boundary conditions are one fixed end and one articulated end. 
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Parameters of model riser are given in Table 1. 
 

Table 1. Parameters of model riser 

Riser length 1500 m 

Outer diameter 0.3239 m 

Inner diameter 0.285 m 

Elastic modulus 207 GPa 

Shear modulus 79000 Pa 

Material density 7850 kg/m3  

Table 2. VIV response parameters 

V (m/s) DC  mC
 LC  

'

LC  

0.18 / 0.4 1.0 1.0 0.9 0.05  

According to Fig. 4, the relation curves of reduced amplitude and reduced speed, TTR 

cross-flow vibration lock-in range is: 4 < 
rU  < 6.3, thus in this paper, velocity 0.18 m/s, which 

is in lock-in range, and velocity 0.4 m/s which is outside lock-in range are selected as 

simulation speeds. 
 

 
Fig. 4. Cross-flow reduced amplitude and reduced velocity 

 

As that different velocity lead to different modes being excited by vortex-induced vibration 

of riser, this paper selects the points where maximum vibration displacement happened at 885 m 

water depth (velocity 0.18 m/s) and 1065 m water depth (velocity 0.4 m/s) as analysis points. 

In-line direction and cross-flow direction displacement time curve of analysis points are given 

in Fig. 5 - Fig. 6 and Fig. 7 - Fig. 8 under the two vortex-induced force models (considering 

parameter excited vibration and not considering parameter excited vibration model). By running 

it was determined that the program of the TTR is stable, so in this paper 0–50 s time history is 

selected.  

Response results of vortex-induced vibration are given in Table 3 and Table 4. 

From Fig. 5 - 8 displacement time histories, we could see that: the riser displacement 

increase whatever in cross-flow direction or in in-line direction if we consider the parameter 

excited vibration caused by floating platform. When velocity is 0.18 m/s, at 1065 m water depth, 

the maximum vibration displacement of TTR in in-line direction increases 0.0154 m, the 

maximum vibration displacement of TTR in cross-flow direction increases 0.0348 m. When 

velocity is 0.4 m/s, at 885 m water depth, the maximum vibration displacement of TTR in 

in-line direction increases 0.091 m, the maximum vibration displacement of TTR in cross-flow 

direction increases 0.1464 m. According to above analysis, the parameter excited vibration 

caused by floating platform increases transverse vibration displacement of TTR. 
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Fig. 5. Displacement time histories of in-line direction riser vibration at 1065 m water depth. Dotted line is 

on behalf of not considering parameter excited vibration, the solid line is on behalf of considering 

parameter excited vibration 

 

 
Fig. 6. Displacement time histories of riser vibration at 1065 m water depth in cross-flow direction. Dotted 

line is on behalf of not considering parameter excited vibration, the solid line is on behalf of considering 

parameter excited vibration 

 

 

Fig. 7. Displacement time histories of in-line direction riser vibration at 885 m water depth. Dotted line is 

on behalf of not considering parameter excited vibration, the solid line is on behalf of considering 

parameter excited vibration 

 

 

Fig. 8. Displacement time histories of cross-flow direction riser vibration at 885 m water depth. Dotted 

line is on behalf of not considering parameter excited vibration, the solid line is on behalf of considering 

parameter excited vibration 
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Table 3. Response results of vortex-induced vibration at 1065 m water depth 

Maximum displacement 
Direction 

No coupled vibration model The coupled vibration model 
Increasing rate 

In-line 0.0156 m 0.0310 m 98.7 % 

Cross-flow 0.4684 m 0.5032 m 7.4 % 

 

Table 4. Response results of vortex-induced vibration at 885 m water depth  

Maximum displacement 
Direction 

No coupled vibration model The coupled vibration model 
Increasing rate 

In-line 0.0029 m 0.0120 m 313 % 

Cross-flow 0.5961 m 0.7425 m 24.5 % 

 

6. Conclusions 

 

The vertical vibration caused by floating platform increases transverse vibration 

displacement of TTR. So, when forecasting dynamic response of deepwater riser, the parameter 

excited vibration caused by floating platform shouldn’t be ignored, instead, it should be taken 

into account. The coupled vibration model of parameter excited vibration and vortex-induced 

vibration of TTR can provide reference for riser design and analysis. 
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