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Abstract. The derivation of dynamic geotechnical parameters of soil are of primary importance 
in designing specific structures. Direct measurements are expensive and time-consuming. In this 
study the correlation between the seismic wave velocities and cone resistance was derived from 
seismic cone penetration testing (SCPT) of Quaternary glacial sandy soils in Lithuania. The 
close relationship was obtained for sandy soils indicating wide range of cone resistance and 
seismic wave velocities. The correlation is as high as R = 0.80. The derived regression equation 
could be reasonably used in assessing dynamic geotechnical and seismic parameters in Lithuania 
and other territories characterized by similar geological conditions using conventional cone 
penetration testing (CPT) method. It enables consistent geotechnical and seismic zoning of 
sandy soils.  
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Introduction 
 

The assessment of soil-structure interaction is an essential objective in modern geotechnical 
designing. The soil deformation parameters should be investigated in order to asses this 
interaction [13, 26]. The prognosis of soil behavior when subjected to dynamic loading is one of 
the essentially complex targets in constructing specific structures. The information on the 
dynamic properties of the soil is very important when planning structures that are going to be 
affected by artificial dynamic loads or potential seismic events. The effect of dynamic forces on 
structures such as nuclear power plants, wind meals, offshore petroleum platforms, etc. subject 
to vibration should be evaluated, including forces produced by earthquakes, wind, sea waves. 
The liquefaction parameters are essential in this kind of studies [2, 25]. 
 Important dynamic geotechnical parameters of soil are the shear modulus G, the maximum 
shear modulus Gmax and the shear modulus G0 of very small strains, also the Poisson's ratio ν. 
Based on elasticity theory the shear modulus G depends on the soil bulk density ρ and the shear 
wave velocity vs [15, 28]: 
 

2

s
vG ⋅= ρ   (1) 

 
 Shear wave velocity directly depends on soil properties, such as soil density, void ratio, 
effective stress that, in turn, are the result of geological evolution of a site, i.e. soil age, 
cementation rate, sin- and post-depositional stress history, over consolidation ratio (OCR). 
Therefore seismic wave velocity provides information on dynamic geotechnical properties and is 
one of basic parameters in assessing the construction site in terms of evaluation of seismic 
hazard or dynamic soil-structure interaction required by Seismic Design Criteria [8]. 
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 Shear wave velocities vs can be measured in laboratory using resonant column, cyclic torsion 
shearing, bender elements, and triaxial test under very small strains (<10-3-10-4 %) of the sample, 
in its centre [14, 23, 24, 29] that, however, leads to partial destruction of sample integrity. 

During the past decades, the geophysical methods such as downhole test (DHT), crosshole 
test (CHT), suspension logging, seismic reflection, seismic refraction, spectral analysis of 
surface waves (SASW), also geotechnical field tests, e.g. seismic cone penetration test (SCPT), 
seismic dilatometer test (SDMT) became increasingly effective in measuring shear wave 
velocities vs of the soil [3, 20]. 
 
Methodology of seismic cone penetration test (SCPT) 
 

Based on world-wide experience of engineering geology studies the cone penetration test 
(CPT) provides most valuable information compared to other field tests. Data collected by using 
this method enables identification of architecture of soil layering, definition of soil types, and 
calculation of a number of geotechnical parameters of the soil. Data derived from CPT are 
directly employed in geotechnical designing. Compared to other field and laboratory methods 
used for measuring geotechnical parameters of the soil the CPT is the most economically 
effective [16, 18].  

In case of simple geological structure, where the foundations could be immediately designed 
based on CPT data this method becomes the major approach, even compensating the need for 
the drilling information, while at a site of more complex geological conditions it provides the 
baseline information for application of other methods. CPT can be applied for investigation of 
soils that are impossible to measure using other field test methods, or sampling is not       
possible [12]. 

The modification of this method to seismic cone penetration test (SCPT) was implemented in 
geotechnical studies several decades ago [2, 27]. The same equipment used in CPT is employed 
in the SCPT test, with the addition of the hammer trigger, recording system and the seismic cone 
electrometer (Fig.1). It was originally developed by Robertson P. K. et al. in 1986 [19]. The 
geophones, fit inside the cone body, are mounted in three orthogonal planes X, Y, Z. A shear 
wave is generated by means of a hammer blow and simultaneously the seismograph is triggered 
and subsequently the seismic wave arrivals at the geophone array are recorded. 

 

 
Fig. 1. Scheme of SCPT penetrometer 

 
The cone is penetrated to measure cone tip resistance, sleeve friction and pore water 

pressure, which are used to calculate the strength of the soil and identify the soil type profile. 
Besides, the shear (and compression, in some cases) wave velocities are measured. At certain 
intervals (commonly at 0.5 m spacing) the cone penetration is stopped and the seismic excitation 
is produced on the surface to make seismic waves propagate to the seismic device and then 
return to the surface where they are registered by special equipment. The principal scheme of the 
seismic CPT test is indicated in Fig. 2.  

In this case shear wave vs velocities are measured at particular intervals. It is also possible to 
measure vp compression wave velocities. This method allows employment of the same 
penetration technique, equipment and data registration system that are used in conventional cone 
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penetration tests. In addition, seismic wave excitement source is required, i.e. plates, hammer, 
seismic module comprising exciter and receiver to register data.  

 

 
 

Fig. 2. Scheme of seismic cone penetration test [2] 
 

Empirical equations relating cone resistance and local sleeve friction to shear wave velocity 
 

The dual application of the cone penetration test described above has been used in different 
regions and resulted in accumulation extensive database as regards the relationship of 
conventional geotechnical parameters (qc and fs) to shear wave velocities (vs). The derived 
relationships (equations) between qc, fs and vs are conventionally allowed for usage in estimating 
soil dynamic properties based on CPT data, in case the alternative SCPT technique is not 
available at a site. Some relationships defined for sandy soils of particular regions are presented 
in Table 1. 
 
Table 1. Shear wave velocity correlation equations for sandy soils derived from different regions based on 
SCPT data 

No. Soil type Equations References 

1 Sand ( ) ( ) 27.013.0 '277 vots qv σ⋅⋅=  Baldi et al., 1989 [1] 

2 Sand ( ) ( ) 179.0192.0 '18.13 vots qv σ⋅⋅=  Hegazy & Mayne, 1995 [7] 

3 Alluvial sand 21870.0 +⋅= cs qv  Iyisan, 1996 [9] 

4 Marine sand 













−








⋅= 350

43.0

a

c
s p

q
v  Paoletti et. al., 2010 [17] 

5 Sand ( ) ( ) 0466.0319.002.12 −

⋅⋅= scs fqv  Trevor et al., 2010 [22] 

here: 
vs – shear wave velocity, m/s; 
qt – corrected (by pore pressure, u2 (in MPa)) cone resistance, MPa: 
 

( )auqq ct −⋅+= 12 ; 

 
qc – measured cone resistance, MPa; 
fs – sleeve friction, kPa; 
σ’ vo– effective overburden stress, (σvo-u0), kPa; 
σvo – total overburden stress, kPa; 
pa – atmospheric pressure, 100 kPa. 
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SCPT study results of quaternary glacial sandy soils of Lithuania 
 

Seismic cone penetration tests were performed by JSC ”Geotestus” in north-east Lithuania. 
Two L-form plates were used to excite shear waves. A special hammer was applied to the plates 
(Fig. 3). In total, 21 penetration sites were measured. Penetration depth reaches 25 m. 
 

 
Fig. 3. Plate used for excitation of shear waves 

 
The depth spacing of seismic velocity measurements was 0.5-1.0 m. The vertical seismic 

velocity profiles were compiled based on penetration test data (Fig. 4). 
 

 
 

Fig. 4. Sample of shear waves propagation to a depth (left hand figure) and diagram of alteration of shear 
wave velocity to a depth (right hand figure), Lithuania, JSC “Geotestus“ 
 

Data were processed using express software; the data processing was carried out by software 
“GeoTech SCPT Analysis”. It is important to note that the latter programme allows removal of 
seismic noise that inevitably disturbs the registered signal. The seismic velocities were 
calculated applying backward polarization and cross-correlation approaches.  
 
Results 
 

The surface of Lithuania is composed by Quaternary deposits that accumulated mainly 
during the last glaciation and postglacial stages [6]. A soil profile is represented by intercalation 
of sandy and clayey (e.g. moraine) sediments. The present study is focused on glacial sandy soils 
of glaciofluvial and glaciolacustrine type. Sandy soils range in grain-size composition and 
density. Only soil layers bellow the ground water level were studied. The Quaternary succession 
is commonly of highly complex architecture. Sands varying from coarse-grained to very fine-
grained were unified into a single sandy soil group. Different layers characterized by specific 
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average cone resistance and share wave velocities were defined based on SCPT data and 
associating drilling information (Fig. 5). 
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Fig. 5. Comparison of profiles of averaged cone resistance and seismic wave velocities 

 
Such combination of different data types enabled compilation of the common database that 

provided a base for comparative analysis of shear wave velocities, vs and soil strength parameter 
represented in form of cone resistance, qc. The regression analysis was applied to derive the 
correlation between those two parameters.  

The depth of analyzed sandy layers is in the range of 3-25 m. In total, 70 averaged values 
were derived. The layer-averaged seismic wave velocities range from 110 m/s to 540 m/s that 
associate with the wide range in cone resistance varying from 2 MPa to 35 MPa. Such a wide 
interval of measured values assures consistency of defined correlation between those two 
parameters. 

The correlation is as close as R = 0.80. The regression equation (2) linking the shear wave 
velocities to cone resistance (Fig. 6) was derived: 

 
908.10 +⋅= cs qv  (2) 

 

v s  = 10.8·q c  + 90

R = 0.8
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Fig. 6. Plot of cone resistance qc vs shear wave velocities vs of studied sandy soils 
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The correlation between shear wave velocities and cone resistance defined for Lithuanian 
sandy soils differ somewhat from those defined in other areas (Fig. 7). For instance, comparison 
of Lithuanian data and relationship provided by Baldi et al. (1989) [1] (see Table 1) indicates 
that the latter underestimates cone resistance of Lithuanian quaternary glacial sands by about 
0.77. This misfit can be primarily related to different soil behavior type [21, 11] of quaternary 
sandy soils of Lithuania and those studied in other regions. 
 

v s(predicted) = 0.35·v s(measured)+ 126.5

R = 0.8
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Fig. 7. Measured shear wave velocities (vs(measured)) of Lithuanian sandy soils vs shear wave velocities 
predicted (vs(predicted)) by Baldi et al. (1989) equation 
 
Conclusions 
 

The correlation between the cone resistance and shear wave velocity was defined for 
quaternary glacial sandy soils of Lithuania using SCPT method. It provides a base for 
geotechnical and seismic microzoning of areas characterized by similar geological conditions 
using conventional CPT data. In the case of seismic zoning the equivalent shear wave velocities, 
i.e. velocities as weighted average of shear wave velocities of soil layers in the top 20-30 m, can 
be estimated for quaternary sandy soils by converting widely available CPT data. Equivalent 
shear wave velocities are commonly used in evaluating the design earthquake characteristics on 
the ground surface [4, 5, 10]. 

The obtained correlation between the cone resistance and shear wave velocities is as high as 
R = 0.80. The equation of correlation of cone resistance with shear wave velocity obtained for 
quaternary sandy soils of Lithuania and those defined in other regions are somewhat different 
that can be related to different soil formation history of sands of various regions. It is therefore 
crucial to define region-specific correlation equations for application of CPT data in determining 
seismic and dynamic properties of soils. Application of correlation equations defined in other 
regions having different geological setting may lead to considerable inconsistencies in 
microzoning of particular areas. 
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