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Abstract. Structural health monitoring of composites, due to their wide use, has attracted more 
attention. It is essential to study variations of structural dynamic characteristics caused by the 
damage. A cracked spectral element model is developed to study dynamics of cracked composite 
structures. Taking crack location as a boundary, the cracked composite beam is separated into 
two parts, which are connected by a spring. The spring, whose flexibility can be obtained by 
laws of fracture mechanics, is used to model axial-flexural coupling effect due to asymmetry of 
the crack. Calculated natural characteristics are in good agreement with the results of 
conventional finite element method. Lamb wave reflection and transmission at the crack location 
are also analyzed to verify the model. Formulations are derived to calculate power reflection and 
transmission of wave modes. The results indicate that power reflection/transmission ratio of a 
single mode is monotonic, which may provide some quantitative foundations for structural 
health monitoring.  
 

Keywords: composite beam, crack, Lamb wave propagation, power reflection and transmission. 
 
1. Introduction 
 

Composite materials have several favorable properties, which are encouraging their use in 
aircraft field. With the development of composites, on-line monitoring of damage in composite 
structures has been an affordable technology. Lamb wave-based method is a fast and effective 
monitoring and plenty of work has been carried out on the experimental investigations [1, 2, 3].  

Lamb wave propagation in complex structures is very complicated due to multiple reflection 
and mode conversion at geometrical and material features. For effectively monitoring structural 
health, numerical simulation is employed to extract damage features. A lot of numerical methods 
have also been developed for wave propagation analysis. Finite element method (FEM) [4] and 
finite difference method (FDM) [5, 6], owing to their own advantages, are the most common 
methods for wave propagation analysis. However, these two methods need a large number of 
calculations. Some other methods, for example, transfer function matrix [7], dynamic stiffness 
matrix [8], boundary element [9], strip element [10], pseudo-spectral element [11] and spectral 
element [12], have been developed. 

Among many frequency domain methods, spectral element method (SEM), introduced by 
Beskos and Narayanan [13] and developed by Doyle [12], attracts wide attention because SEM 
needs less calculation time and memory compared with other numerical methods. SEM uses 
FFT to discretize time history in term of spectral amplitudes and subsequently space in wave 
number space. Concept of finite element nodal quantities and assembly technique is also 
introduced in this method. Wave propagation in isotropic and composite beams and rods has 
been researched [12, 14]. Meanwhile, modeling of damage is also a problem in SEM. The 
modeling of a delamination or horizontal crack in a beam is seen in the literatures [15, 16]. 
Identification of damage using SEM has also been carried out in [16, 17, 18]. Doyle [12] and 
Krawczuk et al [19] analyzed wave propagation in a rod and beam with a vertical fatigue crack, 
in which the crack was modeled as a massless spring. However, at a vertical crack, flexural and 
extensional wave modes must be converted from each other for asymmetry, which is not 
reported in the preceding papers. 
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The purpose of this paper is to extract some damage features for better quantitative crack 
identification by using SEM to model wave propagation in a composite beam with a transverse 
crack. The crack is modeled as a massless spring, whose flexibility can be obtained by 
Castigliano’s theorem and laws of the fracture mechanics. Upon the displacement continuity and 
force equilibrium obtained from the spring, the cracked spectral element formulation can be 
obtained. In addition, wave propagation obtained by SEM indicates power reflection and 
transmission at the crack location, which may provide some foundations for identification of the 
crack depth.  

The paper is organized as follows. In Section 2, calculation of the local flexibility of the 
spring is presented. The cracked spectral element formulation is derived in Section 3. 
Comparison of numerical results obtained by SEM and conventional FEM is provided in Section 
4. Power reflection and transmission analysis obtained by SEM is studied in Section 5. Finally, 
in Section 6 some conclusions are drawn. 
 
2. The local flexibility matrix at the crack location 
 

As shown in Fig. 1(a), when a crack is present in a fiber-reinforced composite beam, the 
local stiffness at the crack location is weakened. Thus, the former undamaged beam can be 
separated into two parts, which are connected by a massless spring in Fig. 1(b) [21]. The 
flexibility coefficients of the spring are obtained using the Castigliano’s theorem: 

2
2 2

1 2 2 3 2
1,3 1,3

( ) ( )ij In In II IIA
n ni j

c d K d K K d K dA
P P

= =

∂
= + +
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∑ ∑∫ , for i = 1, 2, 3,  j = 1, 2, 3,  (1) 

where A denotes the area of the crack; KIi and KIIi are the stress intensity factors; Pi represent 
axial, shear force or bending moment; di can be expressed as [22]: 
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where 1µ , 2µ  are complex roots of the following equation: 
4 3 2

11 15 13 55 35 332 (2 ) 2 0S S S S S Sµ µ µ µ− + + − + = .   (3) 

 

 
(a) 

 

 
(b) 

Fig. 1. A spring modeling the crack in a fiber-reinforced composite beam 
 

ijS is calculated from the following relationships: 
4 2 2 4

11 11 13 55 33(2 )S S m S S m n S n= + + + ,   (4a) 
4 2 2 4

33 11 13 55 33(2 )S S n S S m n S m= + + + ,  (4b) 
2 2 4 4

13 11 33 55 13( ) ( )S S S S m n S m n= + − + + ,  (4c) 
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3 3
15 11 13 55 33 13 55( 2 2 ) (2 2 )S S S S m n S S S mn= − + + + − − , (4d) 

3 3
35 11 13 55 33 13 55( 2 2 ) (2 2 )S S S S mn S S S m n= − + + + − − , (4e) 

2 2 4 4
55 11 13 33 55 552(2 4 2 ) ( )S S S S S m n S m n= − + − + + , (4f) 

where cos ,  sinm nα α= =  (α  is the orientation angle). Sij, denoting the mechanical property 
of the composites, can be calculated as: 
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whereas the mechanical parameters E11, E33, G13 and the mass density ρ can be calculated using 
the following formulation: 

(1 )f f m fV Vρ ρ ρ= + − , 11 (1 )f f m fE E V E V= + − ,   (6a) 
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where the subscript f denotes fiber; the subscript m denotes matrix; E, G, ν  and ρ are the 
modulus of elasticity, the modulus of rigidity, the Poisson’s ratio, and the mass density, 
respectively; and Vf denotes fiber volume fraction. 

The stress intensity factors can be expressed as [23]: 
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 (7) 

where b and h, seen in Fig. 1(a), are width and height of the cross-section; α is a variable along 
the height direction; iY  is corrosion function of stress intensity factors in composite beams [24]; 

F1(α/ h), F2(α/h) and FII(α/h) are expressed as [21]: 
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cij can be obtained from Eq. (1). The local stiffness matrix is given as follows: 
1

11 12 13 11 12 13

12 22 23 12 22 23

13 23 33 13 23 33

k k k c c c

k k k c c c

k k k c c c

−

   
   = =   
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k      (9) 

 
3. Dynamic stiffness matrix in a cracked composite beam 
 

Based on Timoshenko beam theory, the general displacement of a composite beam is given 
by: 

( , , , ) ( , ) ( , )U x y z t u x t z x tψ= + , ( , , , ) ( , )W x y z t w x t= ,  (10) 

where x-axis is the centroidal axis of the beam. u(x, t) is the axial displacement of the beam in 
the x-direction; ψ (x, t) is the rotation of the cross-section of the beam about the y-axis; w(x, t) 

is the transverse displacement of the beam in the z-direction.  
The axis force, bending moment, and shear force can be written as: 
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11 11, ,x xN A u B ψ= + , 55( , )xV A w ψ= + , 11 11, ,x xM B u D ψ= + , (11) 

where 
1 2
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z
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 =  ∑∫ ɶ  and 
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z

z
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I I I z z bdzρ
+

 =  ∑∫  (zi and zi+1 are z-direction coordinates of the ith and 

(i+1)th plies, respectively). 11Qɶ  and 55Qɶ  are reduction stiffness coefficients of composite 

material in plane stress condition. ρ  is the mass density. 2
κ  is transverse shear correction 

factor [20].  
Based on Hamilton theory, equations of wave motion can be obtained as: 

0 1 11 11, , 0xx xxI u I A u Bψ ψ+ − − =ɺɺɺɺ ,  (12a) 

0 55( , , ) 0xx xI w A w ψ− + =ɺɺ ,  (12b) 

1 2 11 11 55, , ( , ) 0xx xx xI u I B u D A wψ ψ ψ+ − − + + =ɺɺɺɺ ,  (12c) 
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Substituting [ ] [ ] ( )i kx tu w U W e ω

ψ
−

= Ψ  into Eqs. (12a)- (12c) yields as follows: 
6 4 2

1 2 3 4 0F k F k F k F+ + + = .               (13) 

There exist 3 pairs of roots of wavenumber k, which represent S0, A0 and A1 wave modes. If the 

wavenumbers of S0 wave modes are α± , the roots of Eq. (13) can be obtained as: 

1,2k α= ± ,  (14a) 
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where k1 and k2, k3 and k4, k5 and k6 are the wavenumbers of S0, A0 and A1 wave modes. 
The spectral displacement of the two elements is given by: 
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where j = 1, 2 represent Element 1 and Element 2, respectively. The time dependence term e-iωt 
has been suppressed here; 1uɶ , 3uɶ  and 5uɶ  are incident wave spectral amplitude, and 2uɶ , 4uɶ  

and 6uɶ  reflected amplitude. For j = 1, 2, 1 1jR = , 
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At the left and right end of the beam, boundary conditions are: 

1 0 1ˆ ˆ| e
xu u
=
= , 

1 0 1ˆ ˆ| e
xw w
=
= , 

1 0 1
ˆ ˆ| e

xψ ψ
=
= , 

22 2ˆ ˆ| e
x Lu u
=
= , 

22 2ˆ ˆ| e
x Lw w
=
= , 

22 2
ˆ ˆ| e

x Lψ ψ
=
= , (16) 

where 1 1 1 2 2 2
ˆ ˆˆ ˆ ˆ ˆ,  , ,  , , e e e e e eu w u wψ ψ  represent the nodal displacement. 
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At the crack location, force equilibrium condition can be written as: 

11 2 0
ˆ ˆ| |x L xN N

= =
= , 

11 2 0
ˆ ˆ| |x L xV V
= =
= , 

11 2 0
ˆ ˆ| |x L xM M

= =
= . (17) 

The jump conditions can be represented by: 
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where kij, the stiffness coefficients of the spring, will be conducted in Section 1. 
Substituting Eqs. (11) and (15) into Eqs. (16)-(18) yields: 

(12 12) (12 1) (12 1)
e
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From Eq. (19), the following expression can be obtained as: 
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=ɶu H u ,  (20) 
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×
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⋮ ⋮ ⋮ ⋮ ⋮ ⋮
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where 1
,m nD−  (m = 1, 2,…, 12; n = 1, 2, 3, 10, 11, 12) represents the element at the mth row and 

nth column in the inverse matrix of (12 12)×
D . 

Substituting Eq. (15) into Eq. (11), the nodal force vector at the left and right end of the 
beam can be obtained as: 

(6 1) (6 12) (12 1)
ˆ e
× × ×
= ɶF E u ,  (22) 

where the nodal force vector { }(6 1) 1 1 1 2 2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ T

e e e e e e e
×
=F N V M N V M . 

Substituting Eq. (20) into Eq. (22) yields: 

(6 1) (6 12) (12 6) (6 1) (6 6) (6 1)
ˆ ˆ ˆe e e
× × × × × ×
= =F E H u K u ,  (23) 

where (6 6)×K  is the stiffness matrix of cracked spectral element. 

 
4. Comparison with FEM 
 

In order to verify the above proposed model, natural characteristic and Lamb wave 
propagation calculated of the cracked composite beam are studied to compare with the 
conventional finite element method (FEM). 
 
4. 1. Natural characteristics 
 

Model analysis performed with the proposed model is compared with FEM simulations. 
Considering a cracked composite cantilever beam in Fig. 1(a), the geometrical properties of the 
cracked beam are: L1 = L2 = 0.5 m, h = 0.01 m, b = 0.01 m and the crack depth a/h = 0.3. The 
properties of composite used in the numerical analysis are as follows: modulus of elasticity   
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Em = 1.24 GPa, Ef = 315 GPa, modulus of rigidity Gm = 1.03 GPa, Gf = 114.8 GPa, Poisson's 
ratios νm = 0.35, vf = 0.23, mass densities ρm = 1600 kg/m3, ρf = 1900 kg/m3. The fiber volume 
fraction is 40%, and the ply-stacking sequence of the beam is [0/-45/0/45/0]s. There are 10.000 
plane strain 4-node rectangular elements in FEM, while there are just two spectral elements and 
a spring element in SEM. Table 1 represents natural frequencies calculated by SEM and FEM, 
which denotes a good agreement between the results. Second, fourth, sixth and eighth bending 
modes vary considerably, because wave crests of these mode shapes are at or near the crack 
location. Meanwhile, since nodal lines are at or near the crack, third, fifth, seventh and ninth 
bending modes have less change. 
 

Table 1. Natural frequencies of a cracked composite beam calculated by SEM and FEM 
Natural frequency calculated by 

SEM (Hz) 
Natural frequency calculated by 

FEM (Hz) Mode 
Un-cracked beam Cracked beam Un-cracked beam Cracked beam 

First bending 14.62 14.54 14.58 14.50 
Second bending 91.24 89.13 91.04 88.93 
Third bending 253.87 253.86 253.35 253.34 
Fourth bending 492.98 482.41 492.12 481.57 
Fifth bending 805.57 805.55 804.45 804.43 
Sixth bending 1186.82 1163.21 1185.69 1162.10 

Seventh bending 1631.45 1631.31 1630.65 1630.51 
Eighth bending 2133.70 2092.24 2133.81 2092.35 

Extensional  2263.49 2253.64 2258.23 2248.40 
Ninth bending 2687.83 2687.36 2689.49 2689.02 

 
4. 2. Lamb wave propagation 
 

Also considering a cracked composite cantilever beam in Fig. 1(a), a bending moment is 
loaded at the left end. The loading signal is a five-peaked narrowband wave modulated by a 
Hanning window, in which the wave energy is concentrated around the central frequency 50 kHz. 
Except that L1 = L2 = 1 m, other geometrical and material properties as well as ply-stacking 
sequence of the cracked composite beam are the same as in Section 4.1, and the crack depth  
a/h = 0.5.   

In SEM, 65536 FFT sampling points with frequency resolution 24.414 Hz are used. In 2D 
plane stress FEM, a fine mesh constituting of plane strain 4-node rectangular elements as in Fig. 
2. Here, the element size, 1mm×1mm, is comparable with the wavelength of the applied 
excitation, and the time resolution is 1 µs. In computational efficiency, the total CPU time of 
FEM is 550 s, while that of SEM is 6 s; the memory of FEM is 15.5 Mb, while that of SEM is 
5.2 Mb. Obviously, the conventional FEM, compared with SEM, needs more computational time 
and memory.  

 S1 M 

L2 L1 L2/2 L1/2 

Crack 

h 

S2 

 
Fig. 2. The schematic of the beam modeled in FEM 

 
The longitudinal and transverse displacements at sensor points S1 and S2 are given in Figs. 

3(a)-(b), in which the signals are non-dimensionalized according to the incident flexural wave 
signal. The displacements in Figs. 3(a)-(b) denote that results obtained from SEM are consistent 



 
763. ANALYSIS OF DAMAGE CHARACTERISTICS FOR CRACKED COMPOSITE STRUCTURES USING SPECTRAL ELEMENT METHOD. 

HU SUN, LI ZHOU 
 
 

 
 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. MARCH 2012. VOLUME 14, ISSUE 1. ISSN 1392-8716 

436 

with those from conventional FEM, which indicates that the proposed cracked spectral beam 
element is effective. 
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Fig. 3. Displacement of sensor: (a) point S1; (b) point S2 
 

In order to demonstrate that the consistency does not depend on the location and the crack 
depth, further study is performed. According to crack location L1/(L1+L2) and the depth a/h  
varied from 0.2 to 0.8 in steps of 0.2 respectively, correlation coefficients between the transverse 
displacements at sensor point S1 obtained from SEM and FEM are calculated to compare the 
similarity of the two results. The correlation coefficient between two signals X(t) and Y(t) is 
obtained as: 

 

{ }1 1 1

0 0 0

2
2 2( ) ( ) ( ) ( )

t t t

xy t t t
X t Y t dt X t dt Y t dtρ = ∫ ∫ ∫   (24) 

 

All signals used to compare with each other are selected from 0 to 1000 µs, which contains 
an incident and a reflected wave pocket at least. Table 2 gives the calculated correlation 
coefficients varying from the location and depth of the crack. It can be observed that, although 
the difference between SEM and FEM increases with the varying depth, this difference is so 
small (the smallest correlation coefficient is 0.91) that it can be ignored. Moreover, the closer the 
crack is to the cantilever end, the more insensitive this difference versus the depth becomes. All 
the calculated correlation coefficients are greater than 0.91, which indicates that the cracked 
spectral element is suitable for each location or depth of the crack in reason to meet accuracy.  

 
Table 2. Correlation coefficients between signals from SEM and FEM 

L1/(L1+L2) 
a/h 

0.2 0.4 0.6 0.8 

0.2 0.99 0.99 0.99 0.98 

0.4 0.99 0.98 0.98 0.98 

0.6 0.98 0.97 0.98 0.98 

0.8 0.91 0.94 0.96 0.98 

 
5. Reflected and transmitted power ratios  
 

The crack with the varying depth will reflect and transmit extensional or flexural wave with 
different amplitudes, which can be expressed by energy. In order to identify the crack depth, it is 
necessary to establish the quantitative relation between energy conversion and the depth of crack, 
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which will provide quantitative theoretical foundations for damage identification.  
The speed of energy transport, i.e. power flow, can be expressed as the rate of work of 

internal forces and moments acting on a beam cross-section. Over a period T, the time-averaged 
power flow can be given as: 
 

0

1ˆ ( )
T

P Nu Vw M dt
T

φ= + +∫ ɺɺ ɺ .  (25) 

Substituting Eqs. (11) and (15) into Eq. (25), the power flow of different wave modes can be 
obtained as:  

2

1 1 1P̂ uλ= ɶ , 
2

2 3 3P̂ uλ= ɶ , 
2

3 5 5
ˆ ( )cP u Hλ ω ω= −ɶ ,  (26) 

where
2 2 2

11 1 55 2 11 3 11 1 3 55 2 3[ 2 ] / 2m m m m m m m m m m m mA k R A k R D k R B k R R A R Rλ ω= + + + +    

(m = 1, 3, 5). 1̂P , 2̂P  and 3̂P  are the power flow of S0, A0, and A1 wave modes, respectively. 

The Heaviside function H used signifies that the term associated with evanescent wave does not 
carry energy when cω ω< .   

For the dispersive phenomenon, the whole energy is still needed to consider all the 
components in the whole frequency domain. Thus, the power flow can be written as: 

2

2

1ˆ ( )
4j j jP u dλ ω ω
π

∞

−∞

= ∫ ɶ   (27) 

where j = 1, 2, 3.  
Similarly as in Section 4.2, considering a composite beam with geometrical properties    

(L1 = L2 = 1 m) in Fig. 2, the loading signal is also the modulated wave with the central 
frequency of 50 kHz. Figs. 4(a) and 4(b) give the transverse and longitudinal displacement at 
sensor point S1 and S2 when the crack depth a/h varies from 0.2 to 0.8 in steps of 0.2. The second 
wave mode of transverse displacement at S1 in Fig. 4(b), i.e. reflected A0 wave mode, becomes 
bigger with the varying crack depth. The longitudinal displacement in Figs. 4(a) and 4(c) 
denotes that the reflected and transmitted S0 wave pockets both become larger when the crack is 
deeper. It can be observed from Fig. 4(d) that the transmitted A0 wave amplitude decreases with 
the increasing depth of crack. 
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Fig. 4. Displacement of sensor versus the crack depth:  
(a) longitudinal displacement at point S1; (b) transverse displacement at point S1;  
(c) longitudinal displacement at point S2; (d) transverse displacement at point S2 
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Fig. 5 is energy conversion ratio (compared with incident wave energy) versus the crack 
depth of the composite beam, which is calculated by Eq. (27). Reflected energy for S0 wave is 
the same as transmitted one, which monotonically increases with the increasing crack depth. It 
also can be observed that the reflected energy of A0 wave increases from zero and will be equal 
to the incident wave at a/h = 1. Inversely, the transmitted A0 wave monotonically decreases as 
the crack becomes deeper and its energy ratio will be zero at a/h = 1. Variation of the energy is 
similar as that of wave amplitude. In addition, the total energy of reflected and transmitted wave 
modes equals the incident energy and does not vary from the crack, which indicates energy 
conservation and further verifies the proposed model. The monotone change of energy for each 
wave mode versus the crack depth indicates the possibility of its application in the quantitative 
damage identification.  
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Fig. 5. Energy ratio versus the crack depth 

 
6. Conclusions 
 

Dynamics of a composite cracked beam is analyzed using SEM by modeling the crack as a 
massless spring, whose stiffness is obtained from the fracture mechanics. The cracked spectral 
element formulation is derived by force equilibrium and displacement continuity corresponding 
to the stiffness of the spring. Compared with conventional FEM, the proposed model proves to 
be effective in analyzing natural characteristics and wave propagation in a composite cracked 
beam. Power reflection and transmission with the varying crack depth is also analyzed so as to 
identify the crack depth. The results denote that power flows of reflected A0 wave, reflected and 
transmitted S0 wave all monotonically increase with the increasing crack depth, while 
transmitted A0 wave energy decreases. The proposed model will provide an effective tool for 
on-line structural health monitoring, and the present results will provide some quantitative 
foundations for damage identification. 
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