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Abstract. Structural health monitoring of composites, dughigir wide use, has attracted more
attention. It is essential to study variations wlictural dynamic characteristics caused by the
damage. A cracked spectral element model is degdltpstudy dynamics of cracked composite
structures. Taking crack location as a boundaly,dfacked composite beam is separated into
two parts, which are connected by a spring. Thingpwhose flexibility can be obtained by
laws of fracture mechanics, is used to model diéaddral coupling effect due to asymmetry of
the crack. Calculated natural characteristics aregbod agreement with the results of
conventional finite element method. Lamb wave wften and transmission at the crack location
are also analyzed to verify the model. Formulatiaresderived to calculate power reflection and
transmission of wave modes. The results indicat¢ plower reflection/transmission ratio of a
single mode is monotonic, which may provide somangtative foundations for structural
health monitoring.

Keywords. composite beam, crack, Lamb wave propagation, posflerction and transmission.
1. Introduction

Composite materials have several favorable pragertivhich are encouraging their use in
aircraft field. With the development of composites;line monitoring of damage in composite
structures has been an affordable technology. Lame-based method is a fast and effective
monitoring and plenty of work has been carriedauthe experimental investigations [1, 2, 3].

Lamb wave propagation in complex structures is wenyplicated due to multiple reflection
and mode conversion at geometrical and materiéiifes. For effectively monitoring structural
health, numerical simulation is employed to extdamage features. A lot of numerical methods
have also been developed for wave propagation sisalyinite element method (FEM) [4] and
finite difference method (FDM) [5, 6], owing to th@wn advantages, are the most common
methods for wave propagation analysis. Howeveseh®o methods need a large number of
calculations. Some other methods, for example sfesirfunction matrix [7], dynamic stiffness
matrix [8], boundary element [9], strip element J[1seudo-spectral element [11] and spectral
element [12], have been developed.

Among many frequency domain methods, spectral eiemeethod (SEM), introduced by
Beskos and Narayanan [13] and developed by Doyl Hitracts wide attention because SEM
needs less calculation time and memory compared ethher numerical methods. SEM uses
FFT to discretize time history in term of spectahplitudes and subsequently space in wave
number space. Concept of finite element nodal dliesitand assembly technique is also
introduced in this method. Wave propagation inrigoic and composite beams and rods has
been researched [12, 14]. Meanwhile, modeling ohatge is also a problem in SEM. The
modeling of a delamination or horizontal crack ifb@am is seen in the literatures [15, 16].
Identification of damage using SEM has also beenezhout in [16, 17, 18]. Doyle [12] and
Krawczuk et al [19] analyzed wave propagation noé and beam with a vertical fatigue crack,
in which the crack was modeled as a massless spilimgever, at a vertical crack, flexural and
extensional wave modes must be converted from edlclr for asymmetry, which is not
reported in the preceding papers.
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The purpose of this paper is to extract some danfeaeres for better quantitative crack
identification by using SEM to model wave propagatin a composite beam with a transverse
crack. The crack is modeled as a massless sprihgsev flexibility can be obtained by
Castigliano’s theorem and laws of the fracture raeats. Upon the displacement continuity and
force equilibrium obtained from the spring, the aked spectral element formulation can be
obtained. In addition, wave propagation obtained SyM indicates power reflection and
transmission at the crack location, which may ptevdome foundations for identification of the
crack depth.

The paper is organized as follows. In Section 2cutation of the local flexibility of the
spring is presented. The cracked spectral elementuiation is derived in Section 3.
Comparison of numerical results obtained by SEM @/entional FEM is provided in Section
4. Power reflection and transmission analysis abthiby SEM is studied in Section 5. Finally,
in Section 6 some conclusions are drawn.

2. Thelocal flexibility matrix at the crack location

As shown in Fig. 1(a), when a crack is present iiibar-reinforced composite beam, the
local stiffness at the crack location is weakenEdus, the former undamaged beam can be
separated into two parts, which are connected bgaasless spring in Fig. 1(b) [21]. The
flexibility coefficients of the spring are obtaineding the Castigliano’s theorem:

& , ,
o LA K + (KK +d dA fori=1,2,3, [=1,2,3, )
i“T n=13 n=13

whereA denotes the area of the craék; andK,; are the stress intensity factoR;represent
axial, shear force or bending momethtcan be expressed as [22]:

G =

4, =~ Lm(f ) g, =g (), dy = Eimi ), @)
2 y7yA 2

where u,, u, are complex roots of the following equation:

glﬂA _2§1d13+ (2§13+ §55)!‘2_ 2§35U+§33= 0. Q)

—— Part1 e Part2 —

(b)
Fig. 1. A spring modeling the crack in a fiber-reinforaammposite beam

§,j is calculated from the following relationships:

S, = Sum* +(2S,+ Sedm’n’ + S n*, (42)
S, = S;n* +(2S,+ Sem’n? + S m*, (4b)
S = (S + Ss—SedmPn® + S (m* +n*) (4c)
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§15 = (_2811+ 2813+ Sss)m3n+ (2833_ S 13 S 55)Tn3 ) (4d)
S, = (—2511+ 25+ Sss)mn3 + (2533— S-S 55)n3n , (4e)
S = 2(2811_ 4S;;+ Bg— Sss)nznz +S 554"“4 +n* ) (4f)

where m=cose ,n= sir (« is the orientation anglef;, denoting the mechanical property

of the composites, can be calculated as:
1

1 E, 1 1Z
=—(1-vi=2), =—@1-v%), Sys=-——(1+v,,), =—, 5
Sy Ell( 13 Ell) Sis ESS( 2) Ss Ell( 2) S G, 5)
whereas the mechanical parameters Es;, G;3 and the mass densitycan be calculated using
the following formulation:
p=pV; +p,1-V,), E,=EV, +E, (Q-V,), (6a)
E; +E, +(E; —E,)V,
"E, +E, —(E, -E\)V,
1+v, +vi,E, Ey _G G, +G,+ (G, -G,)V,
1-vi+vviEl [En 0 "G, +G,— (G, -G, )V,
where the subscript denotes fiber; the subscript denotes matrixg, G, v andp are the
modulus of elasticity, the modulus of rigidity, tHeoisson’s ratio, and the mass density,
respectively; an®/; denotes fiber volume fraction.
The stress intensity factors can be expressed3s [2

N o 6M o \% o
Kll = E\/ ﬂaFl(F)Yl, K|3 = W\) ﬂan (F)Yz , K” = E\/ 7Z'C(F” (F)Yg (7)
whereb andh, seen in Fig. 1(a), are width and height of thessrsectiony is a variable along
the height direction;Y, is corrosion function of stress intensity factor&omposite beanj24j;

Fi(al h), Fy(a/h) andF(a/h) are expressed as [21]:

E.,=E v, =vV, +v,(1-V,), (6b)

(6c)

Vg = ViV +v,,(1-Vy)

2h o ra ) T

F (al/h)=,—tan—| 0.752- 2.02¢ i 0.374 8

)=y 2 anZh{ %Wy { S*é'?) }/ “% (62)
2h T ga\' T

F,(a/h)=,/—tan"—| 0.923 0.199 4 sin- cés- (8b)
o 2h 2h 2h

Fi (@/h)=[1.30- 0.65¢ h )} 0.37% 1)+ 0.28( H3§|/\/ da W (8c)

c;j can be obtained from Eq. (1). The local stiffnesgrix is given as follows:
-1
kll k12 k13 Cll C12 c 13

k= k12 k22 k23 =|C;; Cyp Cy 9)

k13 k23 k33 C13 c 23 c 33
3. Dynamic stiffness matrix in a cracked composite beam

Based on Timoshenko beam theory, the general displant of a composite beam is given
by:
U(xy,zt)=uXt)+zyXt), W(XYy,zt)=w(xt), (10)
wherex-axis is the centroidal axis of the beaufx, t) is the axial displacement of the beam in
the x-direction; y (x, t) is the rotation of the cross-section of the bedoout they-axis; w(x, t)

is the transverse displacement of the beam iz-theection.
The axis force, bending moment, and shear forcéeanritten as:
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N=AuU,+Bw.,, V=AW, +y), M=Bu,+D,y,, (11)
where A=) Jj” k*Q.ddz, [A, B, D=} J.:”(jll[l z Zpdz,  and

[1, 1 |2]=Z'|j”p[1 z zz]bdz (z and z,, are zdirection coordinates of thigh and

(i+1)th plies, respectively)Q11 and 655 are reduction stiffness coefficients of composite

material in plane stress conditiom is the mass density«® is transverse shear correction

factor [20].
Based on Hamilton theory, equations of wave moti@mm be obtained as:

loli+ 17 = ALl =By 1 = 0, (122)
IOW_ ASS(W'XX -Hr//’x ) = 0 ' (12b)
LU+ 17 —B U, —D ., + AW, +y)=0, (12¢)

where [I, I, I2]=Zfﬂp[1 z 7 Jpoz.

Substituting [u w y]=[U W W]e*" into Egs. (12a)- (12c) yields as follows:
Fk®+Fk*+Fk?+F,=0. (13)
There exist 3 pairs of roots of wavenumkewhich represent SO, A0 and Al wave modes. If the
wavenumbers of SO wave modes atg« , the roots of Eqg. (13) can be obtained as:

k,=+Ja, (14a)
2
G, =+ F2+F1a+ F,+Fa)| oF,+Fa)+F, , (14b)
’ 2F, 2 F
2
- F+Ra |[F+Fe _a(F2+F1a)+F3 , (14c)
’ 2F, 2F F

wherek; andk,, ks andk,, ks andkg are the wavenumbers of SO, AO and A1 wave modes.
The spectral displacement of the two elementsvisrgby:

Z R e de™ z R e qelt (15a)
j=1,3,5 j=2,4,6

\i\\ll _ z szljije_iklx+ z RZJUIeIkI(L‘ (15b)
j=1,3,5 j=2,4,6
z RSJuJe v + Z Rslulelkl(lﬂ (150)
j=1,3,5 j=2,4,6

wherej = 1, 2 represent Element 1 and Element 2, resgégtiVhe time dependence tegt"
has been suppressed het®; 0, and U, are incident wave spectral amplitude, adgd, 0,

Ky =1 0° iAk R,
and U reflected amplitude. Fgr=1, 2, R; =1, R;, =_A11 T - ASZ Ry _
Bukj — 1o AKS 1o
k? =10 k- 1.0HR,
Forj=3,4,5, 6,R, =1, R; =A55_J—0' R; =_M.
'ASSkj Ankj -l
At the left and right end of the beam, boundaryditions are:
L"il |x:0= 0:’ \;\V.I. |x:0= Wf’ l/;l |x:0= ‘/;f ! 02 |><:L2= G;’ Wz |><:L2 = AZ’ l/;2 |><:L2= ‘/;(29! (16)

where 07, W, 7, G5 ,W5, 175 represent the nodal displacement.
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At the crack location, force equilibrium conditioan be written as:

N, |x:L1= No beor Vi |x:L1=V2 heor My |x:L1= M, Lo (17)
The jump conditions can be represented by:
N, k11 k12 k13 G2 |><:0 _01 Ix:L1
1 =k, kyp Ky Wzlx: 0_W1L<:Ll J (18)
M, L Ko Ke K ‘/;2 o _‘/;1 Ix:Ll

wherek;, the stiffness coefficients of the spring, will tenducted in Section 1.
Substituting Eqgs. (11) and (15) into Egs. (16)-(#i&)ds:

~ _ A€
D(llez)u (11— q (12 1?
- 1 sl 1 1 mlmlm2 220242 20 Ae (e e T
where u(lle)z{ulu2u3u4u5u5u1u2u 3050 SU} , qlm)—{ul\/\f;z//iOOOOO@JZV\fzt//ez} .

From Eq. (19), the following expression can be wieta as:

(19)

N — e
Uiy = H azeM (&1 (20)

- ne np re me g ~elT . : .
where u(eexl)z{uf W, i 05 W 1,//‘32} ; Hpe), @ sub-matrix of the inverse matrix of
D212, IS given as follows:
-1 -1 -1 -1 -1 -1
Dl,l D1,2 D1,3 Dl,lO D 111 D 112

-1 -1 -1 -1 -1 -1
D2,l D2,2 D2,3 D2,10 D 211 D 2,1

’ (21)

(12<6) =
D:I._le DI;Z D_l:;3 D_112,10 D_:.-Z,ll D_ iz,
where D;jn (m=1,2,.,12n=1, 2, 3, 10, 11, 12) represents the elementeatnth row and

nth column in the inverse matrix oD, -

Substituting Eq. (15) into Eq. (11), the nodal fonector at the left and right end of the
beam can be obtained as:

'féxl) =Epalaa

where the nodal force vectohf(le) = { NE Ve MS NS Ve M ‘32} .
Substituting Eq. (20) into Eq. (22) yields:

,f(le) =EaaH a2 ofite 5= K 6 %6 v (23)

where K., Iis the stiffness matrix of cracked spectral elemen

(22)

4. Comparison with FEM

In order to verify the above proposed model, natutsaracteristic and Lamb wave
propagation calculated of the cracked compositembease studied to compare with the
conventional finite element method (FEM).

4. 1. Natural characteristics

Model analysis performed with the proposed modetdmpared with FEM simulations.
Considering a cracked composite cantilever beaRign1(a), the geometrical properties of the
cracked beam aré; =L, = 0.5 m,h = 0.01 m,b=0.01 m and the crack depth = 0.3. The
properties of composite used in the numerical amlgare as follows: modulus of elasticity
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E, = 1.24 GPaF; = 315 GPa, modulus of rigiditg,, = 1.03 GPaG; = 114.8 GPa, Poisson's
ratiosvy, = 0.35,v; = 0.23, mass densitigg, = 1600 kg/m, p; = 1900 kg/m. The fiber volume
fraction is 40%, and the ply-stacking sequence efltbam is [0/-45/0/45/Q]There are 10.000
plane strain 4-node rectangular elements in FEMlevthere are just two spectral elements and
a spring element in SEM. Table 1 represents naftggliencies calculated by SEM and FEM,
which denotes a good agreement between the reSeaitand, fourth, sixth and eighth bending
modes vary considerably, because wave crests o€ thwde shapes are at or near the crack
location. Meanwhile, since nodal lines are at aarnthe crack, third, fifth, seventh and ninth

bending modes have less change.

Table 1. Natural frequencies of a cracked composite bedouleged by SEM and FEM

Natural frequency calculated by Natural frequency calculated by
Mode SEM (Hz) FEM (Hz)
Un-cracked beam| Cracked beam  Un-cracked beam  Gréeam
First bending 14.62 14.54 14.58 14.50

Second bending 91.24 89.13 91.04 88.93

Third bending 253.87 253.86 253.35 253.34

Fourth bending 492.98 482.41 492.12 481.57

Fifth bending 805.57 805.55 804.45 804.43
Sixth bending 1186.82 1163.21 1185.69 1162.10
Seventh bending 1631.45 1631.31 1630.65 1630.51
Eighth bending 2133.70 2092.24 2133.81 2092.35
Extensional 2263.49 2253.64 2258.23 2248.40
Ninth bending 2687.83 2687.36 2689.49 2689.02

4. 2. Lamb wave propagation

Also considering a cracked composite cantilevembéa Fig. 1(a), a bending moment is
loaded at the left end. The loading signal is &-fpeaked narrowband wave modulated by a
Hanning window, in which the wave energy is concaetd around the central frequency 50 kHz.
Except thatL; = L, = 1 m, other geometricaind material properties as well as ply-stacking
sequence of the cracked composite beam are the aarime Section 4.1, and the crack depth
a’/h=0.5.

In SEM, 65536 FFT sampling points with frequencygolation 24.414 Hz are used. In 2D
plane stress FEM, a fine mesh constituting of pktnein 4-node rectangular elements as in Fig.
2. Here, the element size, Immx1mm, is comparabth the wavelength of the applied
excitation, and the time resolution isu. In computational efficiency, the total CPU tioe
FEM is 550 s, while that of SEM is 6 s; the memofyFEM is 15.5 Mb, while that of SEM is
5.2 Mb. Obviously, the conventional FEM, comparaeth®8EM, needs more computational time

and memory.

M S i .Crach

L2 | |,

Fig. 2. The schematic of the beam modeled in FEM

The longitudinal and transverse displacements rém@epointsS; and S, are given in Figs.
3(a)-(b), in which the signals are non-dimensiasli according to the incident flexural wave
signal. The displacements in Figs. 3(a)-(b) detlod¢ results obtained from SEM are consistent
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with those from conventional FEM, which indicatéstt the proposed cracked spectral beam

element is effective.
‘ ‘ —FEM
0.5r ~~SEM

—_

v‘g‘ —FEM €

) L . & O

§§ 0.5 SEML -

>

2g o i Wbty 2g

o 8o 05

s ks L
1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 02 04 06 08 1 12 14 16
0 02 04 06 08 1 1.2 14 16 Time/ms

Time/ms 0.2

T —FEM
- -—-SEM SEM

-0.1

Longitudina
displacemnt
Longitudina
displacemr

0 02 04 06 0 0.2 04 0.6 0.8
Time /ms Time /ms

@) (b)
Fig. 3. Displacement of sensor: (a) poft (b) pointS,

In order to demonstrate that the consistency do¢slepend on the location and the crack
depth, further study is performed. According toc&rdocationL,/(L;+L,) and the deptta/h
varied from 0.2 to 0.8 in steps of 0.2 respectivetyrelation coefficients between the transverse
displacements at sensor poftobtained from SEM and FEM are calculated to comphe
similarity of the two results. The correlation ci@ént between two signal¥(t) and Y(t) is
obtained as:

Py = \/{ § X(t)Y(t)dt}z / [ x@rat [vora (24)

All signals used to compare with each other arecsetl from 0 to 1000s, which contains
an incident and a reflected wave pocket at leagblelT 2 gives the calculated correlation
coefficients varying from the location and depthtlod crack. It can be observed that, although
the difference between SEM and FEM increases Whighviarying depth, this difference is so
small (the smallest correlation coefficient is Q.€Hat it can be ignored. Moreover, the closer the
crack is to the cantilever end, the more inserssitihis difference versus the depth becomes. All
the calculated correlation coefficients are gredivan 0.91, which indicates that the cracked
spectral element is suitable for each locationegthl of the crack in reason to meet accuracy.

Table 2. Correlation coefficients between signals from S&hdl FEM

ah La/(Ly+Ly)

0.2 0.4 0.6 0.8
0.2 0.99 0.99 0.99 0.98
0.4 0.99 0.98 0.98 0.98
0.6 0.98 0.97 0.98 0.98
0.8 0.91 0.94 0.96 0.98

5. Reflected and transmitted power ratios

The crack with the varying depth will reflect amdrtsmit extensional or flexural wave with
different amplitudes, which can be expressed bygnén order to identify the crack depth, it is
necessary to establish the quantitative relatidwéxen energy conversion and the depth of crack,
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which will provide quantitative theoretical foundats for damage identification.

The speed of energy transport, i.e. power flow, banexpressed as the rate of work of
internal forces and moments acting on a beam @esen. Over a period, the time-averaged
power flow can be given as:

5 Lo
Pz?L (NG+WW+ M g)dt . (29)

Substituting Egs. (11) and (15) into Eq. (25), posver flow of different wave modes can be
obtained as:

[Slzﬂ1|01|2' FA)2=/13|03|2' IE\)3:/15|U’5|2H(0)_0)C)' (26)
where 4, = o[ Ak, | Ryl + Ak |Ran|” + Dok | Rl +2B K, |Ru||R o + A R ][R ]/ 2

(m=1, 3,5). FA>1 f’z and FA>3 are the power flow of SO, A0, and A1 wave modespectively.

The Heaviside functiohl used signifies that the term associated with es@amd wave does not
carry energy wheno < o, .

For the dispersive phenomenon, the whole energgtils needed to consider all the
components in the whole frequency domain. Thusptiveer flow can be written as:

'Sj 24_712 J:’ij (“’)|aj|2dw (27)

wherej =1, 2, 3.

Similarly as in Section 4.2, considering a compmodieam with geometrical properties
(L;= L= 1 m) in Fig. 2, the loading signal is also theduwlated wave with the central
frequency of 50 kHz. Figs. 4(a) and 4(b) give tfensverse and longitudinal displacement at
sensor poing; andS, when the crack deptith varies from 0.2 to 0.8 in steps of 0.2. The second
wave mode of transverse displacemertdh Fig. 4(b), i.e. reflected AO wave mode, becomes
bigger with the varying crack depth. The longitwirdisplacement in Figs. 4(a) and 4(c)
denotes that the reflected and transmitted SO \watkets both become larger when the crack is
deeper. It can be observed from Fig. 4(d) thatrdmesmitted A0 wave amplitude decreases with
the increasing depth of crack.

=3
-

=3

=

£
< =
SE £
=)
£ Ny
%8 0.1 £ g 0
S8, SE
ag 02 80 58
kS %4 s 40 50 S8 0f
i - Sa
Time / ms 20 Crackdepth/% =& LY R W 60 8
S i : 20
g (@) Time / ms Crack depth / %
B 0% £ s (©
= S
S 2 o B
7 e 0
58 .05 32
S8 BE -0
g 02 EE 0
© T4 ) % 0.5 60 80
0.6 m 60 S fime/ms . 40
: 20 | Crack depth / %
Time / ms Crack depth / % pth %
(b) (d)

Fig. 4. Displacement of sensor versus the crack depth:
(a) longitudinal displacement at poift (b) transverse displacement at p@pt
(c) longitudinal displacement at poigf, (d) transverse displacement at p@nt
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Fig. 5 is energy conversion ratio (compared withident wave energy) versus the crack
depth of the composite beam, which is calculatedey(27). Reflected energy for SO wave is
the same as transmitted one, which monotonicatiyeamses with the increasing crack depth. It
also can be observed that the reflected energyloivéve increases from zero and will be equal
to the incident wave a/h = 1. Inversely, the transmitted AO wave monotorycdkecreases as
the crack becomes deeper and its energy raticbwiltero at/h = 1. Variation of the energy is
similar as that of wave amplitude. In addition, tb&al energy of reflected and transmitted wave
modes equals the incident energy and does not frany the crack, which indicates energy
conservation and further verifies the proposed mollee monotone change of energy for each
wave mode versus the crack depth indicates thahilitgsof its application in the quantitative
damage identification.

1 B e o e G S a3 L S 0 a4 0 e e S LS o U s 3
1 (s |
"‘“-,\'
- N
= 0.6F —Reflected/Transmitted SO wave Y
= ——-Reflected A0 wave
g == Transmitted A0 wave
O aal L The total of reflection and transmission |
o .
0.2 N
//
pL——===== il Al e i A g = P o E———— "\
0 20 40 60 80

Crack dept / %
Fig. 5. Energy ratio versus the crack depth

6. Conclusions

Dynamics of a composite cracked beam is analyzedy BEM by modeling the crack as a
massless spring, whose stiffness is obtained flwrfracture mechanics. The cracked spectral
element formulation is derived by force equilibriand displacement continuity corresponding
to the stiffness of the spring. Compared with caniemal FEM, the proposed model proves to
be effective in analyzing natural characteristiogl avave propagation in a composite cracked
beam. Power reflection and transmission with theyiag crack depth is also analyzed so as to
identify the crack depth. The results denote tloatgr flows of reflected AO wave, reflected and
transmitted SO wave all monotonically increase wille increasing crack depth, while
transmitted A0 wave energy decreases. The proposetbl will provide an effective tool for
on-line structural health monitoring, and the preseesults will provide some quantitative
foundations for damage identification.
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