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Abstract. In this study we have analytically analyzed the vibration of parametrically excited 
oscillators based on Mathieu-Duffing equation. He’s Variational iteration method (VIM) is 
applied to obtain analytical solution, while Runge-Kutta method is used to obtain the numerical 
solution. It is demonstrated that VIM is very effective and convenient therefore may find wide 
applicability in engineering and other sciences. Finally, to confirm the validity of the applied 
method, the results of VIM are compared with those obtained by Runge-Kutta method. The 
results from VIM indicate an excellent agreement with the numerical solutions. 
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Introduction 
 

Many physical phenomena can be classified into linear or nonlinear according to the type of 
differential equations of motion. Parametrically excited systems are widely spread in many 
branches of physics and engineering. One of the most important scientific areas is their dynamic 
behavior. We have difficulty in finding an exact solution for these nonlinear problems and they 
have to be solved with other approximate analytical methods. Perturbation technique is one of 
the well-known analytical methods. They are not practical for strongly nonlinear equations, so to 
conquer the imperfections, novel techniques have appeared in open literature, for instance: 
Homotopy perturbation [1-2], Energy balance [3-6], Variational approach [7-8], Iteration 
perturbation method [9] , Max-min approach [10] and other analytical and numerical methods 
[11-19]. Among these methods, variational iteration method is considered for analysis of the 
vibration of parametrically excited oscillator based on Mathieu-Duffing equation. The paper has 
been organized as follows: 

In section 1 we describe the basic idea of Variational iteration method (VIM). The basic 
concept of the Runge-Kutta method is considered in section 2. Then in section 3, applications of 
He’s Variational iteration method (VIM) have been studied to demonstrate the applicability and 
preciseness of the method for two examples. In section 4, some comparisons between analytical 
and numerical solutions are presented. Finally, it is demonstrated that results from VIM have an 
excellent agreement with the numerical ones. 
 
Basic idea of the Variational iteration method 
 

To illustrate the basic concepts of the new technique, we consider the following general 
differential equation [2]: 

( )Lu Nu g x+ =  (1) 

where, L is a linear operator, and N a nonlinear operator, g(x) an inhomogeneous or forcing term. 
According to the variational iteration method, we can construct a correct functional as follows: 

( ) ( ) ( ) ( ) ( ){ }( 1) 0

t

n n n nu t u t Lu Nu g dλ τ τ τ+ = + τ + −∫ ɶ   (2) 

where λ is a general Lagrange multiplier, which can be identified optimally via the variational 
theory, the subscript n denotes the nth approximation, nuɶ  is considered as a restricted variation, 

i.e. ~ = 0 n δu. 
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For linear problems, its exact solution can be obtained by only one iteration step due to the 
fact that the Lagrange multiplier can be exactly identified. 
   
Basic idea of the Runge-Kutta method  
 

For the numerical approach to verify the analytic solution, the fourth order Runge-Kutta 
method has been used. This iterative algorithm is written in the form of the following formulae 
for the second-order differential equation: 
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where, t∆  is the increment of the time and 1h , 2h , 3h , and 4h  are determined from the following 

formulae: 
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 (4) 

The numerical solution starts from the boundary at the initial time, where the first value of 
the displacement function and its first-order derivative are determined from initial condition. 
Then, with a small time increment t∆ , the displacement function and its first-order derivative at 
the new position can be obtained using Eq. (3). This process continues to the end of the time 
limit. 
 
Applications 
 

In order to assess the merits and the accuracy of He’s variational iteration method for solving 
parametrically nonlinear excited oscillator, we will consider the following two examples. 
 
Example 1 
 

The governing equation of Mathieu-Duffing system, which is considered in this study, is 
described by the following high-order nonlinear differential equation [20]: 

3[ 2  (2 )] 0u cos t u uδ ε φ+ + − =ɺɺ  (5) 

where dots indicate differentiation with respect to the time, ε <<1 is a small parameter, φ is the 
parameter of nonlinearity, and δ is the transient curve and can be defined as [20]: 

0
2

2
0

2
(1 ).

2
u

u

εδ φ
φ

= −
+

                                                                                                          (6) 

The initial condition considered in this study is defined by [20]: 

( ) ( )0 0.1  ,  0 0u u= =ɺ  (7) 

According to the VIM, we can construct the correction functional of (5) as follows: 

( ) ( ) [ ]{ }3
( 1) 0

2  (2 )n n n n nu t u t u cos u u d
τ λ δ ε τ φ τ+ = + + + −∫ ɺɺ  (8) 
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where λ is a general Lagrange multiplier. 
Making the above correction functional stationary, we can obtain the following stationary 

conditions: 

( ) 0,λ τ′′ =  

( ) 0,
tτλ τ = =  

( )1 0.tττλ = =′−  

(9) 

The Lagrange multiplier, therefore, can be identified as: 
tλ τ= −  (10) 

leading to the following iteration formula: 

( ) ( ) ( ) ( ){ }3
( 1) 0

2 2
t

n n n n nu t u t t u cos t u u dτ δ ε φ τ+ = + − + + −  ∫ ɺɺ  (11) 

If, for example, the initial conditions are (0) 0.1u =  and (0) 0u =ɺ , we begin with 0( ) 0.1u t = , 

by the above iteration formula (8) we have the following approximate solutions: 

( ) ( )2 2
1 0.1 0.05 0.05 0.05 2 0.0005u t t cos t tε δ ε φ= − − + +  (12) 

In the same way, we obtain as 2( )u t  follows: 
2 2 2

2( ) 0.1 0.05 0.05 0.05 (2 ) 0.0005 18750.u t t cos t tε δ ε φ ε= +− − + +  
3 2 5 2 2 5 3 30.328125 10 0.2724609375 10 0.34722222 10 (2 )cos tφ εφε φε− − −− × + × − ×  

5 2 4 3 7 2 2 40.5625 10 0.9461805556 10 4.6875 10 tφεφ εφ ε− − −− × + × + ×  
8 2 2 8 7 2 2 2 5 2 46.696428 10 1.171875 10 0.125 10t t tδ φ ε φφ− − −+ × + × + ×  

8 3 3 4 23.75 10 (2 ) 0.140625 10 (2 )t sin t cos tεφ εδφ− −+ × + ×  
8 2 3 5 2 2 2 5 2 28.4375 10 (2 ) 0.1875 10 (2 ) 0.375 10 (2 )t cos t t cos t t sin tεφ ε φ ε φ− − −+ × + × − ×  

2 5 2 2 7 2 2 2 20.00025 (2 ) 0.375 10 (2 ) 2.34375 10 (2 )t cos t cos t t cos t tφε εφ ε φ− −+ − × − ×  
5 2 2 2 20.87890625 10 (2 ) 0.025 (2 ) 0.00028125 (2 )cos t t cos t cos tφε δ δε φε δ−− × − +  
2 4 20.000703125 (2 ) 0.0005625 (2 ) 0.140625 10cos t cos tφεδ φεδ εδφ−− − − ×  

3 5 20.05 (2 ) 0.5 10 (2 ) 0.75 10 (2 )t sin t t sin t sin t tδε φε εφ− −+ − × + ×  
7 3 9 4 3 31.125 10 (2 ) 9.375 10 (2 ) 0.5625 10t sin t t cos tεφ εφ φεδ− − −− × − × + ×  

3 2 3 20.70312 10 0.2724609375 10 0.05 0.00075φεδ φε δ δε φε− −+ × − × − +  
8 3 4 3 5 27.03125 10 0.9461805556 10 0.5625 10εφ φε εφ− − −+ × + × − ×  
4 2 4 4 4 6 20.46875 10 0.000125 0.125 10t t tφε δ φεδ φδ ε− −− × + − ×  

9 3 6 5 2 2 3 22.5 10 0.2724609375 10 0.328125 10tφ ε φ φε− − −+ × + × − ×  
5 4 2 12 4 8 8 30.1875 10 (2 ) 2.23214285710 7.03125 10 (2 )t cos t t cos tδεφ φ εφ− − −+ × + − ×  

5 2 2 3 3 20.28125 10 (2 ) 0.75 10 (2 ) 0.375 10 (2 )cos t cos t cos tε φ φε φε− − −− × − × + ×  
4 2 2 5 20.46875 10 (2 ) 0.5625 10 (2 ) ...cos t cos tφε εφ− −− × + × +  

(13) 

And so on. In the same manner, the rest of the components of the iteration formula can be 
obtained. 

 
Example 2 
 

For the second parametrically excited nonlinear oscillator we consider the following: 
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( )cos sin 0tθ δ ε θ+ + =  
ɺɺ  (14) 

with the initial conditions: 

( ) ( )0 0.1 , 0 0θ θ= =ɺ  (15) 

The approximation   3 51 1
( )

6 120
sin θ θ θ θ≈ + +  is used. 

According to the VIM, we can construct the correction functional of (14) as follows: 

( ) ( ) ( )( ) 3 5
( 1) 0

1 1

6 120

t

n n n n n nt t cos dθ θ λ θ δ ε τ θ θ θ τ+
  = + + + + +  

  
∫ ɺɺ  (16) 

where λ is general Lagrange multiplier. 
Making the above correction functional stationary, we can obtain the following stationary 

condition: 
( ) 0,λ τ′′ =  

( ) 0,
tτλ τ

=
=  

( )1 0tτλ τ =′− =              

(17) 

The Lagrange multiplier, therefore, can be identified as: 
tλ τ= −  (18) 

Substituting Eq. (18) into the correction functional Eq. (16) results in the following iteration 
formula: 

( ) ( ) ( ) ( )( ) 3 5
( 1) 0

1 1

6 120

t

n n n n n nt t t cos dθ θ τ θ δ ε τ θ θ θ τ+
  = + − + + + +  

  
∫ ɺɺ  (19) 

Now we are to start with an arbitrary initial approximation that satisfies the initial condition: 

0( ) 0.1tθ =  (20) 
Substituting (20) into Eq. (19) and after simplifications we have: 

( ) ( )2
1 0.1 0.0998334 0.0499167 0.0998334t t cos tθ ε δ ε= − − +  (21) 

In the same way, we obtain 2( )tθ as follows: 
2

2( ) 0.1 0.0998334 0.0499167 0.0998334 ( )t t cos tθ ε δ ε= − − +

 

2 3 5 50.07450099916 0.0006357008267 0.1791715023 10ε ε ε−+ + − ×  
2 2 5 2 7 4 40.02483366639 7.243201131 10 1.293428773 10t t tε ε δε−− + + ××  

7 6 7 2 3 3 9 3 3 86.696260722 10 1.635149462 10 ( ) 1.84467733810cos t tε δ ε δ ε− − −+ × + × −  
8 5 4 7 5 44.519459478 10 ( ) 2.076445331 10 ( )cos t cos tδε δε− −− × + ×  
9 5 5 8 5 35.289058863 10 ( ) 5.165096546 10 ( ) ( )cos t tcos t sin tδε δε− −+ × − ×  

3 3 3 2 5 40.3530324359 10 ( ) 0.1629720254 10 ( ) ( )cos t t t cos t sin tδ ε δε− −− × + ×  
3 3 2 2 8 3 3 3 60.1237544708 10 ( ) 1.147799232 10 ( )cos t t cos t tδε δ ε− −− × − ×  

3 3 2 6 88 7 55.165096546 10 ( ) 7.231135164 10 ( )cos t t cos t tδ ε εδ− −+ × + ×  
5 5 7 4 5 60.7850946750 10 ( ) 0.6941889758 10 ( )sin t t cos t tεδ εδ− −− × − ×  
5 3 3 2 4 5 3 3 2 20.1317099619 10 ( ) 0.7205309682 10 ( )cos t t cos t tδ ε δ ε− −− × + ×  

9 6 6 5 3 2 32.295598465 10 ( ) 0.1241691622 10 ( ) ( )cos t t cos t sin tε δ ε− −+ × + ×  
4 2 4 50.2072937479 10 0.09983341667 ( ) 0.1124586141 ( )t cos t cos tδε ε εδ−− × + +  

7 3 3 5 7 5 23.099057928 10 ( ) ( ) 8.845227835 10 ( )t cos t sin t cos tδ ε δε− −− × − ×  
4 3 3 3 30.001980071532 ( ) 0.8552685694 10 ( )t cos t sin t tδ ε δ ε−− + ×  

(22) 
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5 3 3 5 4 3 3 40.2157862557 10 ( ) 0.1694151667 10 ( )sin t t cos t tδ ε δ ε− −+ × + ×  
4 3 3 3 7 3 3 3 20.9290542054 10 ( ) 3.468904347 10 ( )sin t t cos t tδ ε δ ε− −− × − ×  

7 3 3 3 4 4 41.377359079 10 ( ) 0.1876334007 10 ( )cos t t cos tδ ε δε− −+ × − ×  
3 2 5 3 3 20.2487524974 10 ( ) ( ) 0.3725074867 10 ( ) ( )tcos t sin t t cos t sin tδε δ ε− −− × − ×  
4 4 7 6 20.0002359214083 ( ) 2.711675687 10cos t t tδ ε ε−+ − ×  

8 4 3 55.173715093 10 ( ) ( ) 0.1124586141tcos t sin tδε εδ−+ × −  
4 2 4 5 2 30.3718869513 10 ( ) 0.001013220364 ( )sin t t sin t tε δ ε δ−− × −  
5 2 3 5 4 2 3 40.2483383245 10 ( ) 0.1986706596 10 ( )sin t t cos t tε δ ε δ− −− × − ×  
3 3 3 3 4 20.1092688628 10 ( ) 0.1243762487 10 ( )sin t t t cos tεδ δ ε− −+ × − ×  

2 4 3 3 20.009222796392 ( ) 0.9950099897 10 ( ) ...sin t t t sin tε δ δ ε−− + × +  

 
Results and discussion 
 

In this study, the Mathieu-Duffing equation has been solved by utilizing VIM method. The 
results shown in Figures 1–4 indicate that the VIM provides high accuracy. The figures illustrate 
the time history diagram of the displacement, velocity and phase plan, respectively. 

Figures 1a and 1b represent comparison of analytical solution of u and uɺ based on time with 
the numerical solution and Figure 2 shows the comparison of analytical solution of uɺ based on 
u with the numerical solution for example 1. 

In example 2, the Figures 3a and 3b indicate that the behavior of the oscillation is periodic. 
And the comparison of analytical solution of θɺ  based on θ  with the numerical solution is shown 
in Figure 4. In addition, in comparison with Runge-Kutta method, a considerable reduction of 
the calculation can be observed in the case of VIM. It can be confirmed that VIM is powerful in 
finding analytical solutions for a wide class of nonlinear problems.  
 

 
(a) 

 
(b) 

Fig. 1. Comparison of analytical solution with the numerical solution for φ = 2, ε = 0.01, 0.02δ =  

(a) Time history diagram of u.    (b) Time history diagram of uɺ  
  
Conclusions 
 

The VIM has been applied to analyze the parametrically excited vibrations of oscillators in 
this study. The results from this method have been compared with those of Runge-Kutta. 
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Excellent agreement between the two methods is observed. The presented scheme provides 
concise and straightforward solution to provide reliable results and it overcomes the difficulties 
associated with the conventional methods. Solution of the Mathieu-Duffing equation indicates 
that accuracy of the results is considerably affected by the variation of the parameters ε and δ. 

 

 
Fig. 2. Comparison of analytical solution with the numerical solution, uɺ versus u at φ = 2, ε = 0.01, 

0.02δ =  
 

 
(a) 

 
(b) 

Fig. 3. Comparison of analytical solution with the numerical solution for  ε = 0.05, 0.001δ =
 

  (a) Time history diagram of θ . (b) Time history diagram of θɺ  
 

 
Fig. 4. Comparison of analytical solution with the numerical solution, θɺ

 
versus θ

 
at  ε = 0.05, 0.001δ =  
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