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Abstract. In this study we have analytically analyzed therafion of parametrically excited
oscillators based on Mathieu-Duffing equation. H¥ariational iteration method (VIM) is
applied to obtain analytical solution, while Rurnigetta method is used to obtain the numerical
solution. It is demonstrated that VIM is very etige and convenient therefore may find wide
applicability in engineering and other sciencesahy, to confirm the validity of the applied
method, the results of VIM are compared with thob¢ained by Runge-Kutta method. The
results from VIM indicate an excellent agreemerthwine numerical solutions.
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Introduction

Many physical phenomena can be classified intalire nonlinear according to the type of
differential equations of motion. Parametricallyciéed systems are widely spread in many
branches of physics and engineering. One of thea mortant scientific areas is their dynamic
behavior. We have difficulty in finding an exactigon for these nonlinear problems and they
have to be solved with other approximate analytinathods. Perturbation technique is one of
the well-known analytical methods. They are notpeal for strongly nonlinear equations, so to
conquer the imperfections, novel techniques havyeean@d in open literature, for instance:
Homotopy perturbation [1-2], Energy balance [3-8lariational approach [7-8], Iteration
perturbation method [9] , Max-min approach [10] atber analytical and numerical methods
[11-19]. Among these methods, variational iteratmoathod is considered for analysis of the
vibration of parametrically excited oscillator bdsen Mathieu-Duffing equation. The paper has
been organized as follows:

In section 1 we describe the basic idea of Vaneiateration method (VIM). The basic
concept of the Runge-Kutta method is considereskation 2. Then in section 3, applications of
He’s Variational iteration method (VIM) have bedndied to demonstrate the applicability and
preciseness of the method for two examples. In@edt some comparisons between analytical
and numerical solutions are presented. Finallig, demonstrated that results from VIM have an
excellent agreement with the numerical ones.

Basic idea of the Variational iteration method

To illustrate the basic concepts of the new teamigve consider the following general
differential equation [2]:
Lu+Nu=g(x) 1)
where,L is a linear operator, aridla nonlinear operatog(x) an inhomogeneous or forcing term.
According to the variational iteration method, vea@onstruct a correct functional as follows:

U (1) = U, (£) + [ A{Lu, (1) + NG, () - g (r)} a7 2
where/ is a general Lagrange multiplier, which can bentiied optimally via the variational

theory, the subscript denotes theth approximation,d, is considered as a restricted variation,
i.e. ~=0nsu.
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For linear problems, its exact solution can be iokth by only one iteration step due to the
fact that the Lagrange multiplier can be exactbnitfied.

Basic idea of the Runge-K utta method

For the numerical approach to verify the analytituson, the fourth order Runge-Kutta
method has been used. This iterative algorithmritem in the form of the following formulae
for the second-order differential equation:

Ui =4 +A_g(h1+ 2h,+2hy+k )
At ®3)

Uiy =U; +AL (ui +?(hl+ hy+ ks))

where, At is the increment of the time arg, h,, h,, and h, are determined from the following

formulae:

hy =f (uu; . )k,
At At At
h2 =f (tl +7, U; +7Ui » Ui +_2hl)’

At At 1 At

4
hy =f (ti +—, U +—U,, =At%h, \, +—h2j, “
2 2 4 2

h, =f (ti +At, u, +Atu %Atzhz, U, +At hgj.

The numerical solution starts from the boundarthatinitial time, where the first value of
the displacement function and its first-order datilve are determined from initial condition.
Then, with a small time incremedtt , the displacement function and its first-orderive at
the new position can be obtained using Eq. (3)s Fnocess continues to the end of the time
limit.

Applications

In order to assess the merits and the accurace@f Hriational iteration method for solving
parametrically nonlinear excited oscillator, welwnsider the following two examples.

Example 1

The governing equation of Mathieu-Duffing systemhieh is considered in this study, is
described by the following high-order nonlinearfeliéntial equation [20]:

U+[d+2€ cos(2)u-au®=0 (5)
where dots indicate differentiation with respecthe time,c <<1 is a small parametegis the
parameter of nonlinearity, amds the transient curve and can be defined as [20]:

2¢
O=q2(l- . 6
e (6)
The initial condition considered in this study &fided by [20]:
u(0)=0.1, u(Q9= 7)
According to the VIM, we can construct the correcatfunctional of (5) as follows:
Ugnen (t) = Uy (1) +j0r/1{un +[6+2¢ cos(2r)u, —(/un3} dr 8)
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wherel is a general Lagrange multiplier.
Making the above correction functional stationamg can obtain the following stationary
conditions:

A"(r) =0,
A7), =0, )
1-2'(7) |, =0.

The Lagrange multiplier, therefore, can be idegtifas:
A=71-t (10)
leading to the following iteration formula:
Ugnsgy (t) =4, (t)+J'(t)(r—t){L]'n +[ d+2¢cos(2) Ju, —¢un3} dr (11)

If, for example, the initial conditions ang0) = 0.1 and u(0) = 0, we begin withu,(t) = 0.1,
by the above iteration formula (8) we have thedi@ihg approximate solutions:
u,(t)=0.1-0.0% - 0.08t*+ 0.0&os( t3+ 0.0006" (12)

In the same way, we obtain ag(t) follows:
u,(t)=0.1- 0.0 - 0.08t%+ 0.0fo0s (24 0.0096+0. 187%

-0.328125% 10°@2+ 0.27246093%5 T 2- 0.34722222 %@ tos ° t
-0.5625< 10°£¢” + 0.9461805556 1trp®+ 4.6875 16%1 ¢

+6.69642& 10°0%p1 8+ 1.1718% 16t 2+ 0.125 1Bt

+3.75x 108t 3¢%in (2 W 0.14062%5 IdsopTos 12

+8.4375x 10% 2eppcos (R ¥ 0.1878 I % %pTos (2-) 0.3%5 10 p&n t(;
+0.000252¢Ecos (2 » 0.378 10spcos (25— 2.343%5 1@ pTos ? t ©2°
-0.8789062% 10gx%dcos (29— 0.028%cos #(2+) 0.000283253cos t (
-0.0007031280%cos (2 ¥ 0.00056785cos t(2-) 0.1406R25 “dy”
+0.08desin (2 )~ 0.5 10%t¢gsin @ ¥ 0.78 I8ep’sin (2

-1.125¢x 10"t eg’sin (2 > 9.378 10t “eptos (24 0.5625 1Yo
+0.7031% 10°@d? - 0.27246093%5 TQr?5- 0BS5S  0.0087
+7.03125¢ 10°e¢® + 0.94618055%6 1Gr3- 0.5625 2

-0.46875 10° @23t *+ 0.0001284 *- 0.125 1D W%

+2.5x10°¢1 8+ 0.272460937%5 1bc%p?- 0.328125 "B 2

+0.1875x 10°t *depcos (R ¥ 2.23214285718p1 8- 7.0325 f#pios t |
-0.28125« 10°%p’cos (R ¥ 0.78 IGgcos (24 0.3%5 19r Tos t(:

-0.46875« 10°gx%cos? (2 ¥ 0.5626 IBepTos (2+)

And so on. In the same manner, the rest of the coewts of the iteration formula can be
obtained.

(13)

Example 2

For the second parametrically excited nonlineaillasar we consider the following:
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G+[d+ecos(t) ] sing= ( (14)
with the initial conditions:
6(0)=0.14(09=¢C (15)

The approximation sin(é) = o+16°+_L g7 is used.
6 120

According to the VIM, we can construct the correctfunctional of (14) as follows:
.. 1 1
H(n+1) (t ) = Hn (t ) +J':)A {Hn + (5+ £C0S (T))(Hn +89n3 +H)0n5)}d r (16)
where/ is general Lagrange multiplier.
Making the above correction functional stationamg can obtain the following stationary
condition:

A'(r) =0,
A(r) =0, 17
1_/]'(7) |r:t =0
The Lagrange multiplier, therefore, can be idestifas:
A=r-t (18)

Substituting Eq. (18) into the correction functibkg. (16) results in the following iteration
formula:

G 0) =6, 0)+ [ (1) {6 +(oecos(r) 6, + 2607 + 20 19)
Now we are to start with an arbitrary initial appiroation that satisfies the initial condition:

G(t)=0.1 (20)
Substituting (20) into Eq. (19) and after simp#filons we have:

el(t) =0.1- 0.0998334- 0.049916%* + 0.099838ds (t) (21)

In the same way, we obta#)(t) as follows:
6,(t) =0.1- 0.0998334— 0.049916%° + 0.0998284s t

+0.07450099916 + 0.00063570082687  0.1791715023°££0
-0.024833666381 >+ 7.243201181 £0°+ 1.293428773 40t *
+6.69626072% 10e°+ 1.635149482 10°ctos’t ) 1.8446773381&% t °

-4.519459478 100¢°cos® t(} 2.076445381 18 Tos *t
+5.289058868 100J¢%os® t(} 5.165096546 Pa¢tcos®t qn)t
-0.3530324358 180°%%os t(tf+ 0.1629720264 @ tos t s)t
-0.1237544708 100c%c0s®t(tf- 1.147799282 16 tos °t t (¢ (22)
+5.165096548 100°%cos? t(t)+ 7.231135184 “185%os t t¢
-0.7850946758 10ed%in t(t] - 0.6941889768 ~i@tost t(
-0.1317099618 105°%os?t(t)f+ 0.7205309682 ~id% tos 2t t(*
+2.2955984658 10£%0s®t(4 0.1241691622 “#Fo%stos t s(n)t
-0.2072937478 10J%*+ 0.09983341668st ) 0.112458848%o0s(t)
-3.099057928 10 5% Tos t(gn t() 8.845227885 1@ cos t
-0.0019800715325°%¢cos t (9 0.8552685604 “16°¢%sin t t(
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+0.215786255% 190°%%in t(tP+ 0.1694151667 fo% tost t(*
-0.9290542054 100°%%in t(t)°- 3.468904347 16 % tos 3t t(*
+1.377359078 10 3% os>t(t)*~ 0.1876334007 10 tos t
-0.2487524974 103 4cos t(shh t() 0.3725074867 UPIs Tos t sin)t
+0.000235921408% scos t (tf - 2.711675687 “18°%t 2

+5.173715098 10 detcos®t(gn t(3 0.112458618F

-0.3718869518 10e%0%in t(tP- 0.001013220368 Sin t t(
-0.2483383248 18e25%int(tP- 0.1986706596 £p% tos t t(*
+0.1092688628 13e0%in t(tf - 0.1243762487 ~#0°5 %cos t
-0.00922279639%”J%in t(t)+ 0.9950099897 Fo%sint «)

Results and discussion

In this study, the Mathieu-Duffing equation hasmeaelved by utilizing VIM method. The
results shown in Figures 1-4 indicate that the \pifdvides high accuracy. The figures illustrate
the time history diagram of the displacement, viyoend phase plan, respectively.

Figures 1a and 1b represent comparison of analwidation of u and u based on time with
the numerical solution and Figure 2 shows the coispa of analytical solution ofi based on
u with the numerical solution for example 1.

In example 2, the Figures 3a and 3b indicate thatbehavior of the oscillation is periodic.
And the comparison of analytical solution #fbased org with the numerical solution is shown
in Figure 4. In addition, in comparison with Run§etta method, a considerable reduction of
the calculation can be observed in the case of \liidan be confirmed that VIM is powerful in
finding analytical solutions for a wide class ohtfinear problems.

T T T T T T T T T T T

T
VIM 0.0010 VIM g
" o RK o RK = 8
3 e 4 N Vi
N iV ) & 7N
N f 3\ ¢ b ¢ A

0.0005

0.1000 s

0.0995 A

],.l 0.0000 g
U 0.0990
-0.0005
00985

-0.0010

0.0980 L 1 L 1 L L L L L L ! ! L L
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

time time

G (b)
Fig. 1. Comparison of analytical solution with the numdrgmlution for ¢= 2,¢ = 0.01, 0 =0.02

(a) Time history diagram af.  (b) Time history diagram af
Conclusions

The VIM has been applied to analyze the paramdriexcited vibrations of oscillators in
this study. The results from this method have beempared with those of Runge-Kutta.
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Excellent agreement between the two methods isrebde The presented scheme provides
concise and straightforward solution to provideatde results and it overcomes the difficulties
associated with the conventional methods. Solutibthe Mathieu-Duffing equation indicates
that accuracy of the results is considerably aéfé@dty the variation of the parametei@nds.

0.0010 |-

0.0005 |-

U 0.0000

-0.0005

-0.0010 -

0.0980 0.0985 0.0990 0.0995 0.1000
u
Fig. 2. Comparison of analytical solution with the numerisalution, u versusu at ¢= 2, ¢ = 0.01,

6=0.02

0.105 T T T T T 0.0050
0.100 g
0.0025
0.095
0.0000

0.090

0.085 -0.0025

0.080
-0.0050

0.075

-0.0075 - B
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time time
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Fig. 3. Comparison of analytical solution with the numer&alution for ¢ = 0.05,  =0.001

(a) Time history diagram of . (b) Time history diagram of

0.0025
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-0.0025

-0.0050

-0.0075

0(;75 00‘80 00‘85 00‘90 O(;QS 0. ;00
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Fig. 4. Comparison of analytical solution with the numerisalution, & versusé at &= 0.05, d = 0.001
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