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Abstract: Wavelet finite elements with two kinds of variablier 1D structural mechanics are
constructed based on B-spline wavelet on the iatg®SWI) and the generalized variational
principle. In contrast to the traditional metholde BSWI element with two kinds of variables
(TBSWI) can improve the solution accuracy of theneyalized stress apparently, because
generalized displacement and stress are intergolsd¢parately. Another superiority of the
elements constructed is the interpolating funcB®W!I, which has very good approximation
property, further guarantees solution accuracy.eEbeam, Timoshenko beam and Elastic
foundation beam are studied providing several nigakexamples to verify the efficiency.

Keywords: B-spline wavelet on the interval, multivariableustural mechanics.
1. Introduction

The wavelet method can be viewed as a method ichmtie approximating function is
defined by use of a multiresolution technique basedcaling or wavelet functions, similar to
those used in signal and image processing [1]. WWafiaite element method (WFEM) is a new
numerical method, which takes scaling and wavelgictions to substitute polynomial in
traditional method. Based on the superior propr{ultiresolution, orthogonality etc.) of
wavelet, WFEM hold many superior properties, sushmalti-resolution property and various
basis functions for structural analysis, so WFEMvidely used by many researchers both in
numerical analysis domains [2-6] as well as indtmal analysis field [7-13]. The wavelet
method was proved to converge for a wide classllgdtie operator equations including, in
particular, differential operators as well as siagintegral operators by Dahlke and S. Dahlke
et al. [6]. Based on Daubechies wavelet, Li B. tmsed Daubechies wavelet element and
adaptive scheme for structural response analys.[References [9-11] proposed a crack
identification method for beam, I-beam and runniogor system based on wavelet finite
element model and determinant transformation methml Q. et al. [12] studied the
simulations on the boundaries of the simply supggbend a continuous bridge. Zhong Y. T. et
al. [13] proposed a new wavelet-based element appast vector regression for pipe crack
detection.

To the above wavelet elements for structural aigly® finite element formulations are all
derived from generalized potential energy functiprehich has only one generalized field
function, generalized displacement field functiomhey should calculate moment by
differentiation of displacement and calculation oermould be brought into the results.
Multivariable finite element method (MFEM) can selthis problem. Based on multivariable
generalized variational principle [14-17], genaratl displacement, stress and strain field
functions are all treated as independent varialeghey are interpolated separately in MFEM.
Shen P. C. did a lot of work on MFEM. Based on matiable variational principle, he derived
the formulation of multivariable potential energynttional for many structures in his book [18].
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Using spline function to substitute polynomial aterpolating function, Shen P. C. analyzed the
bending, vibration and stability problems of beatate and shell etc. by MFEM [19-22]. Han J.
G. introduced wavelet into MFEM and constructedtiiatiable wavelet finite element method
(MWFEM) for a thick plate [23]. However, there isd&ficiency of using spline wavelet as
interpolating function in Han’s research. Splinevelat does not have explicit expressions,
which will bring many troubles to the integratiomdadifferentiation of wavelet coefficients.

BSWI has explicit expressions, and is the best am®ng all existing wavelets in
approximation of numerical calculation [2]. Thenefptaking BSWI as interpolating function,
the BSWI element with two kinds of variables is stacted in this paper. Firstly, the
multivariable formulations are derived from genzed potential energy functional with two
kinds of variables, then taking BSWI as interpaigtifunction to discrete generalized
displacement and stress field functions. The atrest of Euler beam, Timoshenko beam and
Elastic foundation beam are analyzed and the msesu# compared with BSWI element and
traditional method to verify the efficiency.

2. B-splinewavelet on theinterval [0, 1]

Chui and Quak constructed B-spline wavelet on theerval [24], and gave its
decomposition and reconstruction algorithm in 1924]. In practical numerical calculation,
BSWI of even order is frequently chosen, to havikeast one inner wavelet on the interval [0,
1], the following condition must be satisfied

2/ >2m-1 (1)

where m and jare the order and scale of BSWI respectively. Wiilescalemth order
B-spline functions and the corresponding waveletsgiven by Goswami J. C. in Ref. [26],
scale mth order BSWI (simply denoted as BSW) scaling functions¢,§1yk(§) and the

corresponding waveletayx,{lk (&) can be evaluated by the following formulas

o (278), k=—-m+ 1.5 1 (@bndary scaling functions
Do =10 (@-278), k=2 -m+1,..,2- 1 (1 boundary scalingfions)  (2)
Pho(@7E-2"k), k=0,..,2-m (inner scaling functions)
Yo (278), k=-m+ 1,.5 1 (0 boundary wavelets

Vo) =0 5 i@ 27¢) k=2~ 2+ 2,.,2-m (1 boundary wavef  (3)
yno(2'é-2"k), k=0,.,2- &+ 1 (inner wavelets)

Therefore, one-dimensional scaling functiods at the lower resolution approximation
space Vj are given by

@ =0} 1) Phnal&) o 0y, €] @)
Semi-orthonormal wavelety” at detail spacew, are
V=V 0al® Vhono@) o v, )] 5)

Let j, be the scale for which the condition Eq. (1) iss§i@d. Then for eachj > j,, let
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| =0, we can get the scaling and wavelet functionslyeésiough Eq. (2) and Eq. (3). There
are m—1 boundary scaling functions and wavelets at 0 and2’l-m+1 inner scaling
functions, and2) — 2m+ 2 inner wavelets.

The eleven scaling function&ik (&) form= 4 at scalg = 3 are given below, among them,

0 boundary functions arep; 5(&) , ¢ »(£), and ¢5_4(£) ; 1 boundary functions are

$35(&) . #36(8), and ¢3,(£); inner functions aregio (&), ¢21(&) . @5, () . 435, and

¢i4 (&) . Fig. 1 shows the scaling functions and wavelets:

6-18x (2°£) +18x (2°£)? —6x (2°£)’,& e [ 00125
0,others

cn L
)= {

18x (228) - 27x (2%¢)? +%L(23§)3,§ e[ 00129

#, = =x{12-18x (26) + 9x (2°¢)’ -gx (22) & < [0125025]

0,others

9% (2°¢)? —1?1(235)3,56[0,0125]

o =L lo9427x (228) - 18x (235)2+%x(23§)3,§e[0125,025]

27-27x (2°8) +9x (2°8)? - 2x (2°¢)*, & €[ 0250375
0, others

(2°¢)*,& [ 00125

—4-12x (2°8) +12x (2°£)? —3x (2°&)°, £ €[ 0125,025)]
— 444 60x (2°8) — 24x (2°£)? +3x (2°£)°, £ [ 0250375
64— 48x (2°£) +12x (2°8)% — (2°£)°, &£ €[ 0375,05]

1
¢j,o =g><

P:1(E) = 95 (£ -0.125), ¢} ,(&) =93 (£~ 0.25), #;4(&) = 4;0(& — 0379
(02,4(5) = (oi,o(g -0.5), (/743,5(5) = (/72_1(1_5)' (pf,e(é:) = (pifz(l_ &), ¢43,7 &= ¢43,73 (B3

3. TBSWI elementsfor one-dimensional structures
3.1 Euler beam

As shown in Fig. 2, there arg-1 nodes on the standard solving domain, and twoegs of
freedom (DOF) at each node. In order to constheffBSWI element, we should first translate

the solving domaino :{x\xe[a,b]} to standard solving domaim = {5\5 € [0,1]} .
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Fig. 2. The standard solving domain and placement of nadd<DOFs of Euler beam

Assuming the coordinate values are:

X, €[x, X, (l<h<n+1) (6)
we define transformation formula:

X —
s (0<e&<1) 7)(

e

Therefore, using Eq. (7), we can majp standard solving domain.

Substituting Eq. (6) to Eq. (7), we can obtainriepping value&, of each node

g’f@ (0<é&, <li<hsn+1) 8)

Based on the generalized potential energy functiatita two kinds of variables, there are
two DOFs at each node. Displacement and momert figiction are treated as independent
variables, the generalized potential energy funetiovith two kinds of variables for Euler
beam bending is [18]:

b M 2
I 2El
whereE is elastic modulust = BH¥12 is inertia moment, anB is the beam widthH is the
beam heightg(x) is distributed loadP; is concentrated load amdis acting position; 4 is the
vibration eigenvalue, andn is density; w(x) is the transverse displacement functionx)

b d2W b b 1 _
Hzp(w,M)z—JM ydx— dx—;[q(x)wdx—zi: p,w(x)—;fi;mwvzdx (9)

a

is moment function.
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By using scaling functions in Eq. (4) as the intéagting function to form field function, and
translating the corresponding coordinate to stahdalving interval, the displacement field
function and moment field function can be obtaiasdollowing:

wW(&) = DT *w° (10)

M(£) = ®T°M © (11)

where TE{W(;) L) gre) . oaT() @) 1%} s the

E I de

e

transformation matrix;w® = {w, w,..w,,}', M*={M,M,.M_,} .

n

Substituting Egs. (10) - (11) into Eqg. (9), accaglio the generalized variational principle

Ay -0 and %=o, we can obtain TBSWI formulation for Euler beanfabws:
6Me e

_iroo 12 [Mme® 0 0 0 M ®
El R [ o [P (12)
T 0 | W P 0 Amr w
So the TBSWI formulation for Euler beam bending is:

F -

- 7r® _re2(M e 0
El . } { } (13)
_r® 0 | W P
The TBSWI formulation for Euler beam vibration is:

_iroo 12 (M |0 0 M ¢ (14
_E{—~zo 0 _We o Amr || we

1
To distributed load,P°® =1, fq(f)dfdg‘ , While to concentrated loadP*® = Z p@' (&) .
0 i

where the integral terms are:
1

o0 =(T%)' 1, [@"dd£(T*)
0

reo =(Te)T% J—dd; ods(T°)
re: = (T z,o)T

Following Eqg. (12) and (13), we can solve the begdind vibration problems of Euler beam
as traditional method.
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3. 2 Timoshenko beam

Considering the influence of shear deformation,d8henko proposed the beam theory with
two generalized displacement in 1921 [27]. Figh8ves the placement of nodes and DOFs on
the standard solving domain. There are two germalidisplacement on each node,
displacement and slope. The transformation forrmbelaveen solving domain and the standard
solving domain is the same as to Euler beam.

n-1 n+1
S

T T

Fig. 3. The standard solving domain and placement of nadd<DOFs of Timoshenko beam

R

The generalized potential energy functional witho tkinds of variables of Timoshenko
beam is [18]:

2 b 2
W9 M IM d& kGA ——6) dx— M dx—
2El

dx
: (15)

a

—:[qwdx— Z PW(X)— !E AMmwAdx

where k. is the shear deformation coefficient which carelaluated numerically [28]5 is
the shear modulugy is cross-section area. Other symbols are the sarireEq. (9).

By taking scaling functions in Eq. (4) as the iptaating function to form the field function,
and translating the corresponding coordinate tadstad solving interval, displacement field
function and moment field function can be obtaiasdollowing:

W($) =T w* (16)
0(&) =dT°0° 17)

M (&) =dT°M*® (18)
where T°= [(DT (51) D) .. D) DT (gfm)]'1 is the transformation matrix;
we={ww,.w, 1", 06={0,6,.0,.]', M ={M,M,.M_.}.

Substituting Eqs. (16)-(18) into Eq. (15), accogplrrm generalized variational principle

My, _ g, 2l _ ¢ and lls _ 5, we can obtain TBSWI formulation for Timoshenkaabe
owe 06° oM ®

bending as follows:

1

—EF‘” - 0 Ml o]l oo o Jwme

-T® KGAr® -KkGAr™| ¢°|=/0|+(f0 0 0 |o° (19)
0 -kGAM® kGAr™ [we| |P°| |0 0 4mr®|w°
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Therefore, the TBSWI formulation for Timoshenko frelaending is:

1

_EFOO _ rOl 0 —M e O
-T®  KkGAr® —KkGAr™| e°|=|0 (20)
0 -kGAr® kGAr™ |w°| |P°

The TBSWI vibration formulation for Timoshenko be&n

—éf‘” - 0 [M] oo o0 Jwme
-T® KkGAr® -kGAr™| o°|=l0 0 0 |o° (21)
0 —kGAr® kGAM™ |w'| [0 0 imr®| w’

1
To distributed load,P°® =1, jq(g)qfdg , While to concentrated loadP*® = Z p@' (&),
0 i
where the integral terms are:

reo=(e) |elj¢T¢d§(re)

o= (1) jdé Pd(T?)

P (1) [ S

dé d¢é
e = ( 1,0)T

3. 3 Elastic foundation beam

Generally, there are three typical computationaldet® for Elastic foundation beam:
Winkler foundation model, elastic semi-infinite fadation model and layered foundation model,
while Winkler foundation model is commonly used.

According to Winkler assumption, the generalizedeptial energy functional with two
kinds of variables for bending and vibration of &ia foundation beam is [18]:

Hzp(W,M)=—!M ixwdx de+k‘* Ivvzdx J'—;tmwzdx Iq(x)wdx pr(x) (22)

where k, is the Winkler foundation coefficient, other synibare the same as in Eq. (9) and

Eqg. (15).

Taking BSWI scaling functions in Eq. (4) as intdgiimg function to discrete solving
domain, and according to generalized variationalggle, the TBSWI formulation for bending
of Elastic foundation beam is:
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L M) [o

02 e

BN (23)
-T?® k1> W P

The TBSWI formulation for vibration problem is:

I eme o o Tme
_ EI ) r ’ } ) |: m OO:||: ° } (24)
- keroo | W 0 Amr w

1
To distributed load, P® =1, jq(§)¢Td§ , while to concentrated loadP® = z p@ (&),
0 i

where the integral terms are:

ree=(7e)'1, ququdg(re)

Iijd ? bde(T?)

ez = (T 20 )T
4. Numerical examples

In order to verify the correctness and efficiendytlee TBSWI element of Euler beam,
Timoshenko beam and Elastic foundation beam coetstiuin section 3, several numerical
examples of corresponding beam under different daryn conditions and load are provided
here. The BSWI scaling functions at scaje-3, order m=4 are chosen to discrete the
solving domain and establish the TBSWI elementagi denoted as TBSWi}

4. 1 Euler beam

Example 1: Simply supported Euler beam with distributed loAd. shown in Fig. 4, the
corresponding parameters are: elastic modilgsl.2x160N/m? beam widthB = 0.1 m, beam
heightH = 0.05 m, beam length= 1 m, distributed load = 1 N/m, respectively.

q

N A A A A A A A 4 A

A 3

Fig. 4. The Euler beam with distributed load and simplyprped on two ends

Adopting BSWI4as trial function, the bending problem of Euler ineshown in Fig. 4 is
analyzed. The corresponding results are shownlifeThand Table 2. Table 1 gives the solving
results of displacement and moment at every nouoig,campared the results of TBSW(22
DOFs) with BSWI4 (11 DOFs), BEAM3 element (66 DOFs) and the thécaksolution [29].
With respect to displacement solution, all elemerats get the solution with nearly the same
accuracy, while in terms of moment solution it tenobserved that the results of TBSYdde
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the same of BEAM3 with more DOFs. So with less DOFBSWI4;can get the results with

good precision both of displacement and momeniTdhle 2, the central displacement and

moment of TBSWI4 are compared with Spline element with two kindsvafiables and

BSWI4; element. From the results, it can be easily ndtibat the displacement and moment
results of TBSWI are equal to the exact solutiohicl is better than the other two elements in

moment solving.

Table 1. Displacement and moment of Euler beam simply supdawith distributed load

Transverse displacement Moment

X TBSWI4; | BSWI4; Beam3 Exact [29] TBSWI4; | BSWI4, Beam3
(22 DOFs)| (11 DOFs)| (66 DOFs) (22 DOFs)| (11 DOFs)| (66 DOFs)
0 0.000000| 0.000000  0.000000 0.0000p0  0.000000 OOG@W | 0.000000
L/10 | -0.003270| -0.00327Q 0.00326p -0.003270 -0.045p00.048D52| -0.04500(Q
2L/10 | -0.006186| -0.00618§ 0.006185 -0.006187 -0.080p00.079227| -0.08000(0
3L/10 | -0.008470| -0.00847Q 0.00846f -0.008470 -0.105p00.104227| -0.10500(Q
4L/10 | -0.009920| -0.00992 0.009917  -0.009920 -0.1@20000.120052| -0.12000(
5L/10 | -0.010417| -0.001042 0.001041 -0.010417 -0.1@5000.126302| -0.12500(
6L/10 | -0.009920| -0.00992Q 0.00991F -0.009920 -0.120000.128®52| -0.12000(Q
7L/10 | -0.008470| -0.00847Q 0.00846f -0.008470 -0.105p00.104227| -0.10500(0
8L/10 | -0.006186| -0.00618§ 0.006185 -0.006187 -0.080p00.079227| -0.08000(0
9L/10 | -0.003270| -0.00327Q  0.003269 -0.003270 -0.045p00.048D52| -0.04500(Q
10L/10 | 0.000000| 0.000000 0.000000  0.000000  0.000000 000GD | 0.000000

Table 2. Central displacement and moment of simply suppdeiddr beam with distributed load

Example 2: Cantilever Euler beam with sinusoidal

Methods DOFs Elw/gL* M/gL?
TBSWI 22 0.01302 0.12500
14 0.01302 0.13021
Spline FEM with two 28 0.01302 0.12630
kinds of variables [18] 42 0.01302 0.12558
56 0.01302 0.12532
BSWI 11 0.01302 0.12630
Exact 0.01302 0.12500

load. As shoim Fig. 5, the

corresponding parameters are: bending rigifiit= 1 Nnf, beam length. = 1 m, distributed
sinusoidal load q(x) = sin(zx/L).

1 L)

[

AN

\\

<

I,

Fig. 5. Equal cross-section cantilever beam with sinusditad

Table 3 lists the displacement, slope and momexntiteeof TBSWI4, BSWI4; element and

theoretical solution. The relative errors of TBSW(22 DOFs), 8 BEAMS3 elements (24 DOFs)
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and 64 BEAMS3 elements (192 DOFs) etc. are showfidgn 6. By comparing the results, we
can observe that TBSWj4an provide results with great precision. With2QFs, TBSWI4
can provide results even better than 64 BEAM3 efemfl 92 DOFs). Transverse displacement,
slope and moment results of TBSWIdre all very close to the exact solution, espBcial
moments, TBSWI4provides great results better than BSYWBo TBSWI4 is very effective at
solving the displacement, slope and moment. Fumbeg, it is better than other methods in
terms of moment solving.

Table 3. Displacement, slope and moment of cantilever be&msinusoidal load

Transverse Slope Moment

X |TBSWI4;| BSWi4y | . [TBSWI4] BSWids | _ [ TBSWi4 [ BSWi4y
(22 DOFs) (11 DOFs) (22 DOFs) (11 DOFs (22 DOFs)(11 DOF

0 | 0.0000 | 0.0000 | 0.0000-0.0000 | 0.0000] -0.0040 0.3183 | 0.3182] 0.319
L/8 | -0.0023| -0.0023| -0.0043-0.0348 | -0.0348] -0.0349 0.2398 | 0.2393] 0.239
2L/8 | -0.0083 | -0.0083| -0.0083-0.0602 | -0.0602] -0.0602 0.1671 | 0.1662| 0.167
3L/8| -0.0170 | -0.0170 | -0.0170-0.0771 | -0.0771] -0.0741 0.1053 | 0.1041] 0.105
41/8 | -0.0273 | -0.0273 | -0.0273-0.0871 | -0.0871] -0.0871 0.0578 | 0.0565] 0.057
5L/8 | -0.0386 | -0.0386 | -0.03§6-0.0922 | -0.0922| -0.0922 0.0258 | 0.0246] 0.025
6L/8 | -0.0502 | -0.0502 | -0.0502-0.0942 | -0.0942] -0.0942 0.0079 | 0.0070| 0.007
7L/8 | -0.0620 | -0.0620 | -0.0620-0.0946 | -0.0946] -0.0946 0.0010 | 0.0006] 0.001
8L/8 | -0.0739 | -0.0739| -0.0739-0.0947 | -0.0947| -0.0947 0.0000 | 0.0001] 0.000

Exact

OC O OO WwRFrOOW®

15 T T 150

N

=
®
X

\:;zﬁ—ﬁ—ﬁ%‘k*—k 71&%—?%&#—& i

=
k)
—_

I
IS

=
N

—%  B8BEAM3
—&— 16 BEAM3
| —+— 328EAM3
*  6aBEAWZ
X 1TBSWI43

Slope relative error(%)
Moment relative error(%)

0.5

Transverse displacement relative error(%)

( ’\‘3)“*}-(’7 05660

I

[ Atk Atk 1
olWeeeeeceee ol

o o5 1 o o5 1 o o5 1
xIL /L xIL
Fig. 6. Relative error of TBSWI4element and BEAM3 element for the cantilever begth sinusoidal

load

Example 3: Vibration of Euler beam. The corresponding pan@ngeare: elastic modulls=
2.06x16"N/m? beam widthB = 0.012 m, beam height = 0.02 m, beam length = 0.565 m,

density m=7890 kg / m.

The vibration problems of Euler beam under sixeddéht boundary conditions are analyzed.
The results of the first three circular frequences given in Table 4, and the corresponding
mode shapes are compared with theoretical solutiofig. 7. Through comparison with
BSWI4; and theoretical solution in ref. [30], we can alsethat TBSWI4 performs well in
terms of vibration analysis. With respect to ciezuirequency, TBSWldyields results that are
better than BSWI4 As for the mode shapes in Fig. 7, the result§B$WI4; almost coincide
with the theoretical solution, confirming that TB®Wis efficient in vibration analysis.
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Table 4. The first three frequencies of Euler beam unddeift boundary conditions

Euler beam Methods o, Irad-§" @, Irad-$" @5/rad-s"
Condition 1 (C-F) TBSWI4, (44 DOFs) | 324.929 2036.297 5702.71
JI— BSWI4, (22 DOFs) 324.929 2036.305 5701.927
de L Exact [30] 324.893 2036.216 5702.036
Condition 2 (C-C) TBSWI4; (44 DOFs) | 2067.605 5699.432| 1117342
y . | BSWI4,(22 DOFs) | 2067.615 5699.668]  11175.059
4L v Exact [30] 2067.604 5699.430|  11173.16p
Condition 3 (F-F) TBSWI4, (44 DOFs) | 2067.607 5699.483] 11173815
| [ BSWI4(22DOFs) | 2067.615 5699.677| 11175140
L Exact [30] 2067.604 5699.430|  11173.16p
Condition 4 (5-S) TBSWI4, (44 DOFs) | 912.089 3648.357 8208.90(
BSWI4, (22 DOFs) 912.090 3648.419 8209.541
m Exact [30] 912.089 3648.357 8208.803
Condition 5 (5-F) TBSWI4, (44 DOFs) | 1424.858 4617467 9634.209
’AT BSWI4, (22 DOFs) | 1424.861 4617.579 963517
Exact [30] 1424 857 4617.451 9633.942
Condition 6 (C-S) TBSWI4, (44 DOFs) | 1424.858 4617 454 9634.083
4 BSWI4, (22 DOFs) | 1424.861 4617577 9635.146
4L :f Exact [30] 1424857 4617.451 9633.942

C: clamp supported; F: free; S: simply supported.
4. 2 Timoshenko beam

Example 1: Timoshenko beam clamped on two sides with disteidlibad. As shown in Fig.
8, the corresponding parameters are: bending tygili = 13/6x13°Nnv, shear rigidityGA =
10" N, shear coefficientk = 6/5, beam length. = 10 m, distributed load = 10°N/m.

Displacement, slope and moment results of TBSMdht traditional element are compared
in Fig. 9. It can be observed from the results thiéh 33 DOFs, TBSWI4can provide results
with the same accuracy of 100 traditional eleméa@2 DOFs), confirming that the TBSWl4
is an efficient method.

Example 2: Timoshenko beam simply supported on two sides witkar distributed
variable load. As shown in Fig. 10, the corresppngdiarameters are: bending rigidiEy = 1
Nm?, shear rigidityGA = 1 N, shear coefficienk_ = 6/5, beam length. = 1 m, distributed load
g=1N/m.

Solution for transverse displacement, slope and embris listed in Table 5, and the results
of TBSWI4; are compared with 100 traditional elements andritecal solution. The attractive
point here is the moment solution, even comparetl ®00 traditional elements (202 DOFs),
TBSWI4; (33 DOFs) can also get the results better thaditivaal elements. So TBSWJ4
element can do excellent job in analysis of Tim&eebeam with variable load, especially in
terms of moment solution.

Example 3: Vibration problem of Timoshenko beam. The coroegbing parameters are:
elastic modulusE = 2.06x10" N/m?, shear modulusz = 5x10° N/m? shear coefficient
k. =6/5, beam widthB = 0.01 m, beam heighi = 0.2 m, beam length = 1 m, density
M= 7890 kg/ni.
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Fig. 7. The first three mode shapes of Euler beam
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Fig. 8. Clamp supported Timoshenko beam with distributed lo
374

© VIBROENGINEERING JOURNAL OF VIBROENGINEERING MARCH 2012.VOLUME 14,1SSUEL. ISSN1392-8716



757.THE MULTIVARIABLE FINITE ELEMENTS BASED ONB-SPLINE WAVELET ON THE INTERVAL FORLD STRUCTURAL MECHANICS
XINGWU ZHANG, X UEFENG CHEN, ZHENGJIAHE, HONGRUI CAO

x10*
3 i %
€ <
g 05F 2 % 1TBSWI43 element
§ ak \*\\ 4 10Traditional elements
g = — 20Traditional elements
_laa 15 ‘ ‘ ‘ ‘ - \*}P - ‘ —— — 80Traditional elements
o 1 2 3 4 5 6 7 8 9 10
(@) L/m
x 10°
5 T T T
A —_ ok
& = —"
5 = +  1TBSWI43 element
£ &w/ 10Traditional elements i
N - 20Traditional elements
& 5 jk‘ - :T/ ‘ ‘ || = - somadiional elements
0 1 2 3 4 5 6 7 8 9 10
(b) /m
x 10°
10 .
£ S #  1TBSWI43 element _F
Zz 5P~ - 10Traditional elements —~
€ - 20Traditional elements
g oL —= ——  — 100Traditional elements _—F = i
S = — -
= 5 | | | = —= —F | | |
0 1 2 3 4 5 6 7 8 9 10
(c) L/m

Fig. 9. Solving solution of TBSWI4element and traditional element for a Timoshenéanh

L

>

Fig. 10. Simply supported Timoshenko beam with linear distiéd variable load

Table 5. Displacement, slope and moment of simply supporieshshenko beam

d‘_l’ransverse Slope Moment
isplacement
X 100 100 100 .
TBS%NI 4, Traditional TBSbVI 4 Traditional TBS%NI 4, Traditional Tz(e)ﬁjrﬁ(t)'gal
elements elements elements
0 0.000000| 0.000000 -0.038889 -0.038886 0.000000.001®66 0.000000
L/10 | -0.031333| -0.031333 -0.037231 -0.0372R7 -0.033000.034611| -0.033000
2L/10 | -0.060672| -0.060671 -0.032335 -0.0323p3 -0.064000.065456| -0.064000
3L/10 | -0.086040| -0.086039 -0.024563 -0.024562 -0.091000.092201| -0.091000
4L/10 | -0.105504| -0.105502 -0.0143%6 -0.014354 -0.0020 -0.112845| -0.11200d
5L/10 | -0.117188| -0.11718% -0.002431 -0.002430 -0.0250-0.125390| -0.125000
6L/10 | -0.119296| -0.119294  0.010311 0.010311 -0.128Pp00 127835 | -0.128000
7L/10 | -0.110134| -0.110132 0.022770 0.022768 -0.119000 118180 | -0.119000
8L/10 | -0.088127| -0.08812§ 0.033645 0.033642 -0.096D00 094226 | -0.096000
9L/10 | -0.051842| -0.051841] 0.041436 0.041432 -0.057000 054571 | -0.057000
10L/10 | 0.000000f 0.00000Q 0.044444  0.044488 0.000p00 000aD 0.000000
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As shown in Table 6, the results of vibration pesblfor the Timoshenko beam under six
different boundary conditions are compared wittote&cal solution in ref. [30] of a thin beam.
The satisfactory results indicate that TBSWI Timergko beam element is efficient in vibration
analysis. It can obtain satisfactory results fdoifedent boundary conditions. Thus, TBSWI
element can perform well both in the case of bemdimalysis and free vibration analysis.

Table 6. First three frequencies of Timoshenko beam unifferent boundary conditions

Timoshenko beam Methods | @,/rad-s" | @,/rad-§" | @glrad-s'
Condition 1 (C-F) TBSWI4, 1036.861 6484.444| 18132.55B
Jd L i ni’éaa‘;;)m] 1037.254 | 6500.361| 18201.19p
Condi/“on 2 (C',Cl)/ TBSWI4; 6575.049 | 18079.067| 35679.436
4 Exact
L
2 , |/ (thin beam)[30]| 6600-309 | 18194.007|  35667.525
Condition 3 (F-F) TBSWI4, 6594.983 18171.464] 35935.078
T Exact 6600.309 | 18193.007] 35667.525
< —>| | (thin beam)[30] ' ' )
Condition 4 (S-S) TBSWI4, 2909.373 11619.159] 26192.24D
Exact
m (thin beam)[30]| 2911617 | 11646.466(  26204.552
Condition 5 (S-F) TBSWIi4, 4544.637 | 14710.661  30837.107
;: Exact
L, (thin beam)(30]| 4548501 | 14740.058 30753952
Condition 6 (C-S) TBSWIi4, 4538.802 | 14676.962  30734.660

“ Exact
j: L :::T’ (thin beam)[30] 4548.501 14740.058 30753.95P
C: clamp supported; F: free; S: simply supported.

4, 3 Elastic foundation beam

Example 1. Bending problem of Elastic foundation beam. As show Fig. 11, the
corresponding parameters are: elastic modilgsl.2x160N/m?, beam widthB = 0.1 m, beam
heightH = 0.1 m, beam length = 1 m, distributed load|, = 1 N/m, Winkler foundation
coefficientk, = 100@EI/L*.

A

2O XK

Fig. 11. Elastic foundation beam simply supported with dstied load
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In Table 7, the solution of central displacementl amoment are compared with Spline
mixed FEM with two kinds of variables [18], BEAM3na theoretical solution [31]. To
displacement solution, the three methods can afaiobperfect results, while to moment
solution TBSWI performs better than Spline mixedtimd with two kinds of variables. Fig. 12
shows the displacement and moment comparison ofWiB&ement and BEAM3 element
along beam length, the two elements are inosculagy well, which further proves that
TBSWI element is an efficient element, very capablgeneralized stress analysis.

Table 7. Central displacement and moment of Elastic founddieam

Simply supported beam with
Methods DOFs distributed load
100wgLY/El 10amgL?
TBSWI4, 22 0.1116 0.79642
Spline mixed FEM with two|
) ) 34 0.1116 0.7899
kinds of variables [18]
BEAM3 33 0.1116 0.79667
Theoretical solution [31] 0.1116 0.7966
0 ‘
“ e
€ oo05F R ]
e ~
0.1k TH— T 4
;g —H— e —*
2 015¢ —+- TBSWI43
---- BEAM3
02001 02 03 04 05 06 07 08 o083 1
(a)L/m
0
—*- TBSWI43 Y,
\ ---- BEAM3
£ os5F \ / .
2N AN e e
g 1k Sy — -~ 4
_15 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1
(b)L/m

Fig. 12. Displacement and moment of Elastic foundation beam

Example 2: Vibration of Elastic foundation beam. The correqfinog parameters are: elastic
modulusE = 1.2x16N/m?, beam widthB = 0.1 m, beam height = 0.1 m, beam length = 1
m, density M= 7890 kg / m, Winkler foundation coefficieri,= 100CEI/L*.

The first order frequency coefficient is shown iable 8, and the results are compared with
spline mixed element with two kinds of variable J[33pline element [33] and theoretical
solution [34]. We can witness that TBSWidlement performs very well both in the case of a
simply supported and clamp supported Elastic fotiodabeam. The solution indicates that
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TBSWI element is not only efficient in static argily of Elastic foundation beam, but also in
free vibration analysis.

Table 8. First order frequency coefficient of Elastic foation beam(o/ = w,,,”JEIl )

Methods Simply supported Clamp supportad
TBSWI4, 33.1272 38.7371
Spline mixed FEM with two
] ] 33.1272 38.7382
kinds of variables [32]
Spline FEM [33] 33.1273 38.7376
Theoretical solution [34] 33.1272 38.7584

5. Conclusion

Based on B-spline wavelet on the interval and thétivariable generalized potential energy
functional, we constructed BSWI element with twads of variables for 1D structural
mechanics. The matrix formulations are derived fronitivariable generalized potential energy
functional, and BSWI is selected as trial functiortonstruct the generalized displacement field
function and generalized stress field function. deubeam, Timoshenko beam and Elastic
foundation beam under different boundary conditiaresanalyzed.

To traditional method, there is only one generdlifield function, displacement, so they
should calculate generalized stress and strainiffgrehtiation of displacement, which will
affect the solving precision. However, the BSWI nedmt with two kinds of variables
constructed in this paper can avoid this problemcabise generalized displacement and
generalized stress are treated as independenblearjavhich can be solved directly instead of
differentiation. Besides, the semi-orthogonal, cantly supported BSWI is selected as a trial
function, which is excellent in approximation of merical calculation among all existing
wavelets. In order to verify the TBSWI element, tiending and vibration problems of Euler
beam, Timoshenko beam and Elastic foundation beane wnalyzed. Computational results
indicate that the TBSWI element is a steady anidiefit method, which can perform very well
not only in static analysis, but in vibration ars$yas well.
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