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Abstract. The presence of damage in an intact structure leatiie change in internal force and
deformation due to stiffness deterioration in tegion of damage. This study proposes model-
based damage detection methods by deriving the emettical formulation to describe such
changes. The force and deformation variations betwbe undamaged and damaged systems
are derived by minimizing the variation in dynamsitain energy with respect to the internal
force and deformation vectors, respectively. Theyexpressed by the product of a coefficient
matrix and the external force vector, and the pcbdtia coefficient matrix and the displacement
vector, respectively. Taking singular value decosian (SVD) on the coefficient matrices of
rank-deficiency, this study identifies the damagéziments as belonging to the set of elements
whose internal forces or deformations between tdjacent nodes of finite element model are
not changed. The validity of the proposed methedkustrated in a simple application.
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1. Introduction

Regular inspection and condition assessment of sfitictures are necessary to allow early
detection of any defect and to enable maintenandeepair works at the initial damage phase,
so that the structural safety and reliability atmmgnteed with a minimum of costs. Structural
damage detection technique indicates the probleroef to locate and detect damage in a
structure by using the observed changes in itsmimaharacteristics.

There has been a lot of research endeavor for dadhetgction and assessment of structures
by the dynamic approach using dynamic test dathherstatic approach using static test data.
The spatially sampled field measured during theadyio and static testing has been an active
area of research for many years. The structuraladenteads to the change in the static and
dynamic characteristics of the initial system. dt interpreted that the change of physical
properties provides basic information which caredethe damage.

Doebling et al. [1] presented a recent thorougherewof various vibration-based damage
identification methods. Doebling et al. [2] preszha method for identifying the local stiffness
of a structure from vibration test data based gr@ection of the experimentally measured
flexibility matrix onto the strain energy distrithom in local elements or regional superelements.
Sheena et al. [3] presented an analytical methabgess the stiffness matrix by minimizing the
difference between the actual and the analytiadffhess matrix subjected to the measured
displacement constraints. Minimizing the differetegween the applied and the internal forces,
Sanayei and Scampoli [4] presented a finite elemeihod for static parameter identification of
structures by the systematic identification of @laending stiffness parameters for a one-third
scale, reinforced-concrete pier-deck model. Sanapei Onipede [5] provided an analytical
method to identify the properties of structuralneémts from static test data such as a set of
applied static forces and another set of measuispladements. Minimizing an index of
discrepancy between the model and the measuremBatgn et al. [6, 7] proposed the
mathematical formulations of two least-squares ipatar estimators that evaluate element
constitutive parameters of a finite-element modhelt tcorresponds to a real structural system

305

© VIBROENGINEERING JOURNAL OF VIBROENGINEERING MARCH 2012.VOLUME 14,ISSUEL. ISSN1392-8716



750.DAMAGE DETECTION BASED ON THE INTERNAL FORCE OR DERRMATION VARIATION .
JN BONG KIM, HEE-CHANG EUN

from measured static response to a given set diloand they investigated the performance of
the force-error estimator and the displacementrestimator.

Hjelmstad et al. [8] proposed the mutual residua¢érgy approach which can estimate
complex linear structures. The method based optiheiple of virtual work yields equations for
estimating stiffness and mass parameters of lirstarctures by decomposing the system
matrices. Hjelmstad and Shin [9] developed an dicaly method based on a parameter
estimation with an adaptive parameter grouping mehéo localize damage in a structural
system for which the measured data are sparseetCali [10] developed a damage detection
algorithm based on static displacement and strBlitis method has a difficulty in requiring
sufficient measurement information and load caGési et al. [11] developed an elastic damage
load theorem and an approach on the damage idatidfin using static displacements. Chen et
al. [12] presented a two-stage damage identifioasitgorithm to use the change of measured
static displacement curvature and grey system yhd&@akhtiari-Nejad et al. [13] presented a
method to describe the change in the static disptent of certain degrees of freedom by
minimizing the difference between the load vectofsdamaged and undamaged structures.
Wang et al. [14] proposed a two-stage identifiatedgorithm for identifying the structural
damages by employing the changes in natural frefjeeand measured static displacements.

Pandey et al. [15] stated that once the displacermbapes of a damaged and of the
corresponding undamaged structures are identiffed curvature can be obtained by a central
difference approximation. The damage exists apthgtion to exhibit the abrupt increase of the
curvature due to the deterioration of flexuraldigi.

The change in flexibility or stiffness matrix isagsfor the damage identification. Starting
from the theorem of minimum strain energy, Bernbb][ presented a damage localization
method based on a change in measured flexibilitg fEchnique identifies the elements of the
structure that are damaged as belonging to thefselements whose internal forces under the
action of a set of load vectors are constant. R&td17] proposed a method for locating
structural damage using experimental vibration dainout a priori knowledge about the
undamaged structure. This method was derived uthdemssumption that the section of the
intact structure is homogeneous and uniform witlemyt defect.

Minimizing the variation in dynamic strain energyedto damage with respect to the internal
force and displacement variation vectors, respeltivthis study proposes damage detection
methods to detect damage from the internal forcgefwrmation variation. The local change of
stiffness due to damage yields the rigid body mmoby the damaged element only. It is shown
that the damages located at the elements thataanagkd as belonging to the set of elements
whose internal forces or deformations are not cedndhe method does not require the input
data and can be easily utilized for locating thendge. The validity of the proposed method is
illustrated in a simple application.

2. Formulation

Under the excessive increase in external forcabeaction of unexpected loads, structures
can be partially damaged and the stiffness is etded due to damage. Thus, the variation in
stiffness or flexibility matrix can be utilized a® index to detect the damage. The stiffness or
flexibility variation is related to the internalrfe or displacement variations in the structure as
the change of mechanical properties before and thitedamage.

Considering a damaged beam structure under a sxternal forces, the deflected curve of
the damaged beam can be similarly described biniti@l beam subjected to the external forces
as well as unknown forces at several measuremesitiqpes. Figure 1(a) exhibits the deflected
curve of an initial beam structure subjected toomcentrated load. As the load increases, the
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beam is likely to be damaged and Fig. 1(b) reptssbe deflected curve of the damaged beam.
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Fig. 1. Damage detection approach; (a) deflected curverbefamage, (b) deflected curve after damage,
(c) additional displacement caused by the additimrae on undamaged beam

The additional deflection of the beam due to themalge can be approximately estimated by
the additional forces at measurement positionsurgid.(c) represents the additional deflection
u" —u, where u” and u indicate the deflection of the damaged and undachageam
structures, respectively. The mathematical equationrepresent the variation in the internal
force and deformation are derived by minimizing thwest functions of force or displacement
variations at measurement locations before and thftedamage.

The dynamic behavior of a structure, which is asslirto be linear and approximately

discretized fon degree-of-freedom, can be described by the equsatibmotion:

M 4l +C U +K u = F(t) (1)

where M, and K, denote the analyticalnxn mass and stiffness matrices,

u=[u u, - u,]", and C, eR™™ is the damping matrix, andr(t) is the nx1 load
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excitation vector. Without loss of generality, Reigh damping is adopted as:

Ca=aM,+ 8K, 2)

where « and g are the two proportionality constants, which canrélated to the damping
ratios of the first and second natural modes. A&sgnthe system is lightly damped and
considering the actual dynamic system due to danthgalynamic equation of Eq. (1) becomes:

Mii+Ku=F (3)
where K represents the actual stiffness matrix after gimabe. And we assume that the mass
is not changed asvl =M ,.

Inserting u = Uel and F=Fe/™ into Eq. (3) and expressing it as the form of
frequency domain, it follows that:
(k -2m @) =F@) @)
where Q denotes the frequency of the external force. Espanse of the original structure,
described byU(Q), to an external excitation, described BYQ), is given by:
BoU(Q)=F(Q) (5)
where BO(Q)z (K —QZM) is the impedance-type matrix or dynamic stiffnesastrix of the
original structure. It is shown that Eq. (5) of dymic equation in the frequency domain takes the
similar form as the static equilibrium equation. d&btransformation using the real eigenvalues
and eigenvectors leads to the representation dfélqeency response function (FRF) matrix for
an excitation frequencyQ :

T
n . .
H(Q)=_Z (|2’|(P| . (6)
I=la)i -Q
with U(Q)=H(Q)F(Q) and Bo(Q)=H 1(Q). For the case of a displacement response at
stationp and a disturbing force at statigrthe numerical frequency response can be constructe

as:

n ¢i,p¢i,q
Q)=
I=lwi -Q

where ¢; , denotes the-th element of the vectoy .

’ (7)

p,q(

The structural dynamic features can be changedn@xpected environmental change or
damage of the system and should be determined lmastite measurement modal data. Let us
assume that from the modal displacements correapgmaol a disturbing force at statiap their
relative relation can be written as:

AUQ)=0 (8)
Equation (8) represents constraints to locally govihe dynamic response$) denotes a
specific frequency andJ(Q) is the corresponding deformation shape. The dynatiffness
matrix and FRF matrix in the frequency domain of &) should be modified for satisfying the
measured test data of Eq. (8).

We derive the internal force vector required fotaifing the response variation deviated
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from the initial response due to damage. Let ussiden then degree-of-freedom system
described byU =[J1 L]z Ljnr. The dynamic strain energy,, for the undamaged
state is given by:

V, = % UTB,U 9)

where By denotesnxn positive-definite dynamic stiffness matrix. Andetldynamic strain
energy, Vq , for the damaged state is written as:

Vy = % uBU (10)

where B and U represent the dynamic stiffness matrix and diggtaent vector of the
damaged system, respectively. Based on the minirstmain energy, a member of the set of

admissible functions can be the undamaged displkaceriield and the substitution of the
displacement field into Eq. (10) leads to the ietabf:

%UTBU Z%UTBOU (11)

The dynamic stiffness of the damaged system canrieen in terms of the initial dynamic
stiffness:

B =2Bg=By+AB (12)

where & is a coefficient matrix to represent the relatiohinitial and damaged dynamic
stiffness matrices, and\B denotes the dynamic stiffness variation matrixe Tddditional
forces are defined as the constraint forces redua@ditionally for obtaining the damaged
responses at measurement positions of the injtsdém. The forces should explain the dynamic
stiffness variation and can be written as:

F®=(AB)U = CF (13)
where Cq is the coefficient matrix of the external forceciar F to describe the constraint
force. The coefficient matrix is expressed as thecfion of its initial dynamic stiffness matrix
By . In the following, the control forcem¢ as well as the coefficient matrix is derived based
the variation in the dynamic strain energy.

The cost function is defined as the quadratic fafthe variation in the dynamic strain
energy between the undamaged and damaged stateghddry of minimum strain energy is
interpreted that of all the admissible displaceméhtt yield the correct displacement at the
loaded coordinates, the actual displacement fiedd $atisfies equilibrium minimizes the strain

energy. The variation in the dynamic strain endrgiween the intact and damaged systems can
be written as:

U =%(U—0)T BO(U—L”J):%(FC)T By 'F° (14)

Minimizing Eq. (14) with respect to the control der Bo_lleC and utilizing the result into

Eq. (13), we obtain:
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By Y2F¢ =By Y2 F =0 (15)
Because the matriXB is positive-definite matrix, the solution of E45) satisfies:
CF=0 (16)

The non-trivial solution of Eq. (16) is to satisflyet(Cs): 0. However, the coefficient
matrix Cg is rank-deficiency and the solution is characetizby its singular value
decomposition. It will be observed that the damexjsts at the element whose internal force in
any element caused by the stiffness variation ischanged. It comes from the result that the
change of the stiffness by the damaged element mpgyesents the rigid body motion. The
problem is to determine the coefficient mat; to describe the force variation and it is

established by evaluating the measured displacesment

Let us assume that the constraints to describeldneaged responses are expressed such as
Eqg. (8). Assuming that of all admissible dynamiaist energy distributions that yield the correct
displacement at the loaded coordinates, the astraih field that satisfies force equilibrium is to
minimize the variation in the dynamic strain eneripe constraint force vector can be directly
derived. It can be also interpreted that the actlisplacement vector of all the admissible
displacement vectors that give the measured displants by the action of the external forces as
well as the additional forces is to minimize theiaton in dynamic strain energy of Eq. (14).

Modifying the constraint equation of Eq. (8) by tiedation of BoU = F +FC, it follows:
ABo V2B, Y2Bq = ABy V2B, Y 2(F° + ﬁ): 0 (17)

-1/ ZFC

Solving Eq. (17) with respect t® with the solution of the generalized Moore-

Penrose inverse, it is derived as:
By V2FC - g, M2 J{l _(ABO—llz)*(ABO—llz)}y (18)

where ‘+’ denotes the Moore-Penrose inverseyaisdan arbitrary vector.
Introducing Eq. (18) into Eq. (17) and providing thhinimization condition into the result,
we obtain:

~By Y+ [I - (ABO‘” ZT(ABO‘” 2)}y =0 (19)
Again, solving Eqg. (19) with respect to the arbrigraectory, it follows:
y= [I ~(AB, ) (ABo’l’z)}(Bo’”zﬁ)+(ABo’ ") (AB, YY)z (20)

wherez is an arbitrary vector antﬁ,&Bo_llzy(ABo_llzXABO_HZT = (ABo_llzy . Inserting Eq.

(20) into Eqg. (19) and arranging the result, thestint force vector is derived as:

F¢ =By Z(ABO_” 2)+ABO_1IE (21)

The constraint force vector of Eq. (21) is exprdsas a function of the initial stiffness
matrix as well as the external force vector. Ibliserved that Eq. (21) satisfies the condition of
Eqg. (16) under any external excitatidh. Thus, the coefficient matrixXC5 can be defined as:
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Ce=-Bg" Z(ABO_” Z)FABO‘1 (22)

BecauseCy is rank-deficiency, the damage locates at the efeérwhose internal force is
the same from the singular vectors by SV@n the coefficient matrix of Eq. (22). This method
does not need any information on the input forcea dand must be a simple method, but it
requires the exactly measured data. In the follgwine consider the displacement variation
between the intact and damaged systems insteaé édrice variation.

The variation in the strain energy of Eq. (14) barmodified as:

U =%(AU)T Bo(AU) (23)

Assuming that the external forces are invariarg,egfuilibrium equations of undamaged and
damaged systems are related as:

BoU = BU (24)
Inserting the relations o8B =By+AB and U =U+AU into Eq. (24), neglecting the

higher order term and arranging the result, itola8 that:

BoY2(AU)=—(AB)U (25)
Considering the condition to minimize Eq. (23), left-hand side of Eq. (25) is written as:

BoY2(AU)=B,Y?c;U=0 (26)

where C; = —Bo_l/Z(AB) and it is the coefficient matrix of the variatiorector in the

displacement between the intact and damaged systems

Equation (26) indicates that the damage existeaetement whose internal deformation is
zero such that the element represents the rigidy bedtion. Utilizing the measured
displacements of Eq. (8) and taking the same psote®btain the relation like Eq. (22), the
displacement variation can be derived. The comggddy measured data of Eq. (8) can be
modified as:

Al0+AU)=0 or A(AU)=-AU @7)
and Eq. (27) is also modified as:
AB, Y 2[501’ 2(AU)J= ~AU (28)

Solving Eq. (28) with respect tcBollz(AU), it follows that:

1 Singular value decomposition takes a rectanguldrixnaf gene expression data. The SVD
theorem states:

T
Anxp = UnannxpV pxp

where the columns df) are the left singular vectors (gene coefficienttues); S (the same

dimensions a#\) has singular values and is diagonal (mode ang@&} and VT has rows that
are the right singular vectors (expression levetames). The SVD represents an expression of the
original data in a coordinate system where the Gamae matrix is diagonal.
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0? =11.748 rad / se ®; =[0.1644 02338 02601 0.2263 0.2635" (33)

Inserting the above measured data and stiffnessxniato Eq. (32) and taking the SVD on
the results, we obtain the numerical results listedrables 1 and 2, which exhibit that the
damages are detected by investigating the variatémtor of modal displacement and force in
the singular matrixJ or VTcorresponding to zero element in singular valuerima. It is
displayed that the damage is located at the elebetmteen two nodes that the absolute values
of internal force or deformation are not changed.

Table 1. Numerical results of SVD ofC s (k, and k; damage)

U -0.4097 0.1173 -0.0399 -0.8466 -0.3163
0.3999 -0.7533 0.2244 -0.1404 -0.450(0
-0.0064 0.4622 0.6976 0.2213 -0.5004
0.5737 0.4028 -0.5638 -0.0325 -0.4355
-0.5857 -0.2069 -0.3787 0.4621 -0.5071

S 78.2839 0 0 0 0

0 1.0000 0 0 0

0 0 1.0000 0 0

0 0 0 1.0000 0

0 0 0 0 0.0000
VT -0.3216 0.1173 -0.0399 -0.8466 0.4057

-0.4449 -0.7533 0.2244 -0.1404 -0.4057
-0.5006 0.4622 0.6976 0.2213 -0.0000
-0.4281 0.4028 -0.5638 -0.0325 -0.5792
-0.5145 -0.2069 -0.3787 0.4621 0.5792

Table 2. Numerical results of SVD ofCg (k, and k; damage)

U -0.3216 0.0000 0.0000 0.8556 0.4057
-0.4449 0.0181 0.7979 0.0251 -0.4057
-0.5006 -0.8056 -0.2550 -0.1882 0.0000
-0.4281 0.4124 -0.5461 0.1137 -0.5792
-0.5145 0.4251 0.0127 -0.4680 0.5792

s 78.2839 0 0 0 0

0 1.0000 0 0 0

0 0 1.0000 0 0

0 0 0 1.0000 0

0 0 0 0 0.0000
VT -0.4097 0 -0.0000 0.8556 -0.3163

0.3999 0.0181 0.7979 0.0251 -0.4500
-0.0064 -0.8056 -0.2550 -0.1882 -0.5006
0.5737 0.4124 -0.5461 0.1137 -0.4355
-0.5857 0.4251 0.0127 -0.4680 -0.5071

4. Conclusions

The structural damage can be detected from themation on the variation in displacement
or force vector before and after the occurrencalarhage. Minimizing the variation in the
dynamic strain energy with respect to the forcdisplacement variation and taking the SVD on
the coefficient matrices of the force or displacemariation, we straightforwardly provided the
damage detection method. It was observed that #imades located at the elements whose
internal forces or deformations between two adjanedes of finite element model are the same
in the singular matrix. The methods can be widdllizad in detecting the single or multiple
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damages. But it is necessary to modify or refinfoiitapplying more generally to the systems
with less measurement data, instrumental noiseeasarement errors.
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