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Abstract. Existing system identification methods are mosdihaling with local changes that are
time-invariant. However, the process of local cleamy a real structure caused by damage is
mostly time-varying, which can be modeled with amfpe in the physical parameters such as
structural stiffness and damping. An identificatalgorithm for a time-varying beam system is
proposed based on wavelet analysis. The respogselsis firstly decomposed using the
Daubechies wavelet scaling function. The goverdiffgrential equation of a structure is then
transformed into a set of linear equations basedhenorthogonality property of the scaling
functions in a wavelet space. Finally, the propoaggbrithm is illustrated with studies on a
cantilever beam structure. The precision of idegtfon with respect to different wavelet scales
is investigated and discussed. Numerical resultaodstrate that the proposed method can
identify smoothly, periodically and abruptly timesying physical parameters with excellent
accuracy.

Keywords. time-varying, system identification, wavelet-G&ia, Daubechies, scaling function,
orthogonality, cantilever beam.

1. Introduction

Many methods have been developed for the systentifidation of linear time-invariant
(LTI) system [1-6]. However, the structures are enor less time-varying during the damage
process when they are still under service. Systarameters and dynamic characteristics of the
structure also vary during the process. The LTI ehaznnot fully describe the time-varying
dynamic characteristics of the structure with tleewrence of local damages. The associated
system identification methods cannot track theatem of time-varying parameters accurately.
Therefore the study on linear time-varying (LTVstms is of great significance.

The identification of LTV systems for damaged staue has received increasing attention
recently. Some commonly used algorithms include Hilbert transform method [7-10], the
state-space method [11-14], the least-squares a&timwith adaptive tracking method [15-18]
and the wavelet-based method [19-20]. Each of thes¢hods has its own merits and
disadvantages. The development of an exact andiegffi identification approach for the
time-varying system remains to be a challengindpierm.

Compared with the Fourier analysis, the waveletsfiarm makes use of adjustable window
location and size to decompose a signal and itcegiture more time-localized information. A
discrete wavelet analysis approach was developtt lay Daubechies [21]. The wavelet
methods have been applied to signal analysis wittaeced performance. With the benefits of
the orthogonality properties, compact support andcked representation of a function at
different levels of resolution, the compactly suipd wavelets have also been applied to the
numerical solution of partial differential equatioased on the Wavelet-Galerkin method
[22-23].

Wavelet-based system identification approaches Hmen proposed in the last decade.
Staszewski [24] proposed three methods to identifydal damping ratios based on the
continuous wavelet transform. Ruzzene et al. [2jwed that the application of the wavelet
analysis to the free responses of a multi-degrééssedom system represents a good

292

© VIBROENGINEERING JOURNAL OF VIBROENGINEERING MARCH 2012.VOLUME 14,1ssUEL. ISSN1392-8716



749.DAMAGE DETECTION IN TIME-VARYING BEAM STRUCTURES BASED ON WAVELET ANALYSIS
QIONG Y OU, ZHIYU SHI, LIN SHEN

improvement for the identification of instantanedusquencies compared with the Hilbert
transform. Newland [26] used harmonic wavelet tineste the frequency of a transient signal.
Approaches to identify natural frequencies andatiscdamping ratios as well as mode shapes
have been developed by Argoul et al. [27-29]. Tlavelet approach for system identification
was based on the comparison of the natural fredeersend damping ratios obtained from
analyzing two segments of data recorded beforeadted the damage [30]. The sensitivities of
wavelet coefficient, wavelet packets and the impukssponse function with respect to a local
damage have also been derived for the identifinatth a damage structure (31-33). The
identification algorithms for non-linear systemsdalso been developed [34]. However, all the
above-mentioned approaches are only valid fordbatification of LTI systems.

The application of wavelet analysis to the ideatifion of linear time-varying systems can
be found in Ghanem and Romeo [19]. Single and tegrees-of-freedom systems are studied to
demonstrate the effectiveness in tracking thredemifit time-varying parameters. A new
identification algorithm is presented in this paper estimate the physical time-varying
parameters of a beam system based on the waveléisimn The response signal is firstly
decomposed using the Daubechies wavelet scalingtiftm The governing differential
equations are then projected into a subspace sganna finite number of wavelets. With the
orthogonality property of the scaling functions; ttifferential equations are simplified into a set
of linear algebraic equations. All the physicalgraeters can then be identified by solving the
set of simultaneous equations. Section 2 introdugsesfly the basic properties of the
Daubechies wavelet. Section 3 develops the ideatifin algorithm for estimating the
time-varying physical parameters of a beam stract8ection 4 presents numerical examples to
illustrate the procedure of the proposed identifica algorithm and demonstrate its
effectiveness. Sections 5 and 6 provide the dismussd conclusions respectively.

2. Basicintroduction to Daubechies wavel et

The Daubechies wavelet is briefly introduced beftine presentation of the proposed
method. Wavelet is a family of orthonormal funcBooharacterized by the translation and

dilation (scale) of the basis wavelet functiayn(-). This family of functions, denoted by
v «(x), can be written as:

i
w10 =22p (2 x-K) &)
where 2! is the scale parameter akis the translation parameter.

The wavelet z,//(x) and the associated scaling functiog$x) satisfy the following
recursive relations as:

wlx)=2, (-1 e plax-k) 2)
$(x)=>" a*p(2x—k)

in which a finite number of the filter coefficients* and «** are nonzero.
The translation of the scaling functiog(x) is orthonormal for ani andm parameters with

p(x=K)p(x—m)dx =5, 3)
J
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The functions derived from the translation and tiila of the wavelet functiorl//jyk(x)
form a space of complete and orthogonal basisherstjuare integrable functiong(R). Any
L*(R) function f(x) may be approximated at resolution levgl by:

P f(X)zzkaj,k¢j,k(X) 4)

whereg; is a vector for resolution levgland translatiork. P f (x) represents the projection

of the function f(x) onto the space of scaling functions at resolugerl | with:

4, (0= 22421 x k) (5)

where ¢jyk(x) is a scaling function basis for the scaje approximation of LZ(R). The set of

approximations P f (x) constitutes a multi-resolution representatiorhef function f(x).

3. ldentification technique for a beam structure

The identification equation for a beam structur@risposed in this section. A time-varying
planar beam structure is modeled with finite elenmeathod. The equation of motion of the
degrees-of-freedom system can be expressed as:

M (t)x(t)+ C(t)x(t) + K (t)x(t) = f(t) (6)

in which M(t), C(t). K(t) are nxn time-dependant mass, damping and stiffness matate
the system respectivelyf(t) is a nx1 excitation vector, andx(t), X(t),X(t) are nx1

displacement, velocity and acceleration vectorpeaetvely. The system matrices can be
expressed as:

M(t)=> Met)=> pAlME
K(t)=> K°(t)=D" E.t)()KE (7)
ct)=3 (B M(t)+ B K())

where p, is the mass densityA, (t), I(t) and E.(t) are the time-dependent cross-sectional
area, moment of inertia of the beam cross-sectimhraodulus of elasticity of material in each

element respectivelyM (t) and K®(t) are respectively the time-varying mass and stifine

matrices of each eIemenC(t) is the viscous proportional damping matrix wittogortional

coefficients g,, and B, . The consistent matricet: and KZ of a planar beam element
can be written as:

156 22L | 54 -13L
|
S ST O R S B U U )
© 4200 54 13L ! 156 -22L| M MS,
~13L -3L21-22L 4L°
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12 6L | -12 6L
|
6L 4L ' -eL 2.7 KE K¢
KCe 2% _________ A _| ™1 12 (8b)
L*|-12 -6L! 12 -6L| |KE K&
6L 212 1-6L 4L?

in which L is the length of each element. Only the flexuigidity Ele(t) of each element is

taken as the unknown time-varying parameter in shisly. Substituting Equations (7) and (8)
into Equation (6), the free vibration equationtod beam structure can be re-arranged as:

M [%(t)+ A X(0)]+ Ke[xc (t)+ A% (KED s ()= 0 ©)

in which:

(EI )s(t): (Ell(t) El 2(t) -+ H NE(t))T (10a)
K, Ki 0

Ke :ZeKS _ K;l ng K121 K122 (10b)

Ka K Ki Kg
0 : : nx(2n-4)
where NE is a number of elements, an.(t) and x(t) are the displacement and velocity
matrices respectively denoted by:

x(t)=

%) %) %) (1) o T

= () x(t) xs(t) x(t) (11a)
%) %) x(t) (1)

. ° x(2n-4)

*s(t) =

%(1) K (t) K(t) x(t) 0 T

- % (1) %,(t) X(t) X(t) (11b)
(1) %(t) %(1) %e(t)

i O : : ENEx(Zn—4)

with the subscripts 1, 2, 3, ... etc. denoting thgrde-of-freedom of the system. With the use of
compactly supported Daubechies wavelets, any squdegrable function f(x) can be

approximated at resolution levej as in Equations (4) and (5). The respone(e) can then be
rewritten with wavelet presentation as:

)= & 2%¢(2j t-k) (12)

where «, is a coefficient vector which can be computed vtita periodic assumption [22].
The time derivatives ofx(t) can be expressed in terms of the correspondirg dienivatives of
the wavelet function as:
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xt)=2'Y @, 2 H2't-k), x0)=22Y &, 2 f2't-K) (13)

B
Substitute Equations (12) and (13) into Equatioh #8d let y=2't and «, =224, .
Taking the inner product of both sides of Equa@nwith ¢(y—|), and with the orthogonality

property of the translation of the scaling functipi&quation (9) is projected from the physical
space into the wavelet space and is written as:

M, (ZZj Zk O‘kn(i) +2' B, Zk akrl(iLl)()—i_ KC(O‘CJ +2' B, Zk ac,kn(})k XEl )s,| =0 (14)

for the |I-th time instance with k=[1-2N+2/-2N+3;- ]+ N- 3+ N- 2
I= Oylzvvy_ly

% = [dly-Kkg(y-)dy; 1% = [gly—kh(y-1)dy (15)

in which T,2 and I, are the connection coefficients described by Lattal. [35], and N

denotes the number of vanishing moments for thécodar class of Daubechies wavelets. It is
noted that Equation (14) is a setroimultaneous equations for time instahcéssuming the
mass of the system is known and time-invariant,afiqn (14) can be rewritten in matrix form
for all the time instances as:

ToO=B (16)

For the generit-th time instance in Equation (14), matricds and B are given by:

T = Kc(ac,l +2/ By Zk%,kﬂ(ﬂ)
g =(El)s, 17)

B =-M, (ZZj Zkakrl(—zll +2' B Zkakﬂ(ﬂ)

The set of simultaneous Equation (16) is the idieation equation for the unknown
parameters. For theth time instance, Equation (16) gives the inforoatbn the system within
the time interval from-2N+2 to I+2N+2 time instances. Thus, the evolution of the patans
over the duration associated with each time intecaa be estimated by means of the above
algorithm. For a linear time-invariant system, Bipm (16) can be used in different
combinations to estimate the unknown parametershndre assumed constant during the whole
duration of analysis.

This identification algorithm can also be useddenitify any linear time-varying system with
an assumption that the time-varying physical patarseremain constant within the time
interval. Sequential arrays of Equation (16) cambtined for the sequence of time instances to
constitute an over-determined set of equation fdeast-squares solution with the estimated
parameters assumed to be time-invariant over the ititerval under consideration.

4. Simulation results

Four examples are investigated to identify the firagying parameters for a cantilever beam
as shown in Fig. 1. The geometrical and physicatipaters are: length of beat=1.0m,

height H =0.005m, breadth W =0.01m, mass densityp = 7800kg/mi The proportional

296 © VIBROENGINEERING JOURNAL OF VIBROENGINEERING MARCH 2012.VOLUME 14,1ssUEL. ISSN1392-8716



749.DAMAGE DETECTION IN TIME-VARYING BEAM STRUCTURES BASED ON WAVELET ANALYSIS
QIONG Y OU, ZHIYU SHI, LIN SHEN

damping coefficients aref,, = f, =0.001. The beam section has an original flexural rigidit

of El =20.834Nni The first eight modal frequencies of the beam 4r@9, 25.632, 71.787,
140.77, 233.07, 349.16, 489.89 and 656.32 Hz réisphc The cantilever beam is divided into
ten equal length elements. Only the flexural riyidif each element is assumed as time-varying
parameters. A support excitation in the verticabdlion is simulated with an initial velocity and
acceleration at the supporting node &s=1.0m/s,%, = 1.0m/5 The response of the beam

structure is obtained from numerical solution af #guation of motion using the Newmark-beta
method.

/
/?/ Ei(fy, o, A

&
7 BRE 3 éé MEZ2|NE1| NE E"
///‘ L Joo e,
Z ) oo >
-

Fig. 1. Model of cantilever beam

Example One: Smooth change of flexural rigidity in a singleraknt.
Suppose the flexural rigidity of the 1-st elementhamges with time as

El,(t)=El (1— 0.22) Nnf and the other elements retain their original frexstiffness values.

Two seconds of free vibration response from alldbgrees-of-freedom of the system are used
in the identification. The number of sampled datdes depending on the resolutionj # 9 and

t = 2s, theny = 2t = 1024, and there are 1024 time instances for tiedysis indicating a
sampling rate of 512 Hz. The dB3 Daubechies wawegit three vanishing moments is used,
i.e. N=3. For each of the time instance, we have 22 numbfkegjuations in Equation (16),
which is more than the 10 number of unknown flekuigidity. The identification result on
Ell(t) for j = 9 is represented by the dotted line in Fig. 2hgkide with the true values for

comparison. The estimated results have a gooditgdehavior on the smooth change of the
1-st elemental flexural rigidity.

ElL) (Nm?)

0 05 1 15 2
Time (s)
Fig. 2. Comparison of identified result and true valueEsample 1

Example Two: Periodical change of flexural rigidity in a singleement.
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A periodical change in the 1st elemental flexuigidity of the beam structure is modeled
as El (t)=El [1—0.6005( 8t)} Nri Other elemental flexural rigidites are assumed

time-invariant at their original values. The unknmoflexural rigidities of the beam elements are
identified in the same way as for the precedingnla from two seconds of measured data.
The identified value ofEl,(t) obtained forj = 9 is compared with the true value in Fig. 3.
Results indicate that the proposed identificatitgoathm can track the periodical change of
flexural rigidity of the beam structure during tiwhole time duration. Fig. 4 shows the error of

identification, defined a#|EI e _E| 'D"/"EI el x100% , in the estimated flexural rigidity of

the 1-st element when using three different wavedsblutions of = 7, 8 and 9 to analyze the
response data. Higher resolution is noted to gighdr identification accuracy.

60

50+ H

a0} 4

EIL(t) (Nm2)

Time (s)

Fig. 3. Comparison of identified result and true valueEaample 2

12r

o
©

o
1)

Error of EIL(t)

O n ! J - e
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s)

Fig. 4. Identification error versus resolution and time Example 2

Example Three: Abrupt change of flexural rigidity in multiple elemts.

The abrupt change in multiple elemental flexurgldities of the cantilever beam is further
investigated to evaluate the ability of the progbaégorithm to detect multiple damages. The
flexural rigidity of the 1-st, 2-nd and 6-th elenteare assumed to change abruptlyt at1.0s
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from the original value 0f20.834Nmi to new values 0f10.417Nnf, 12.5004Nm and

16.6672Nm respectively. The flexural rigidities of other elents are assumed constant at
their original values. The identification is contkat in the same way with= 9 as for the last
two examples. Fig. 5 shows the estimated flexugadlity of the 1-st, 2-nd and 6-th elements
respectively alongside the true values. The prapedgorithm is demonstrated to be capable of
tracking the abrupt changes of flexural rigiditieshe three elements of the beam structure.

35

30

25

EI1() (Nm2)

35

301

El2() (Nm2)

Time (t)

0 L L L L I L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Time (1)

Fig. 5. Comparison of identified results and true valigsExample 3

Example Four: Abrupt and periodical changes of flexural rigiditymultiple elements.

The flexural rigidities of the 1-st, 2-nd and 6dlements change abruptly &t 0.6s, and
then vary as a periodic process. The expressiodggoribe these abrupt and periodic changes
are denoted as:
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ELf)-g, t<os |Eh()=EI[1-05cof &t)] N, t> O
El,(t)=El, t<06, {El,(t)=El[1-0.6cog &t)] Nrfi , t> 0.

El()=El, <06 |g (1)=EI[1-08cof 81)] N, t> O.

The flexural rigidities of other elements are canstat their original values. The unknown
parameters to be identified are the time-varyirexdtal rigidities of all the elements in the
structure, same as those for Example 3. The ideatiifn is performed in a similar way with=
9 as for the last example. The estimated resuttgiaen in Fig. 6, and they are noted to be very
close to the true values. The error of identifization the unknown parameters from using
different resolution in the analysis witke 7, 8 and 9 are shown in Fig. 7. Higher resoluton
noted once more to be responsible for a higherracgun the identified results.

EI1() (Nm2)

20}

30 I I I I I 1 I T T H
0 0.2 0.4 0.6 0.8 1 12 14 16 18 2
Time (t)

50

40

EI2(t) (Nm2)

-30

1 1 I 1 1 1 1 T T
0 0.2 0.4 0.6 0.8 1 12 14 1.6 18 2
Time (t)

50

EI6(1) (Nm2)

201

-30
0

L L L L L L L L L
0.2 0.4 0.6 0.8 1 12 14 16 18 2
Time (t)

Fig. 6. Comparison of identified results and true valuesswample 4
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o
©
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Error of EI6(t)
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Fig. 7. Identification error versus resolution and time Example 4
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5. Discussions

(1) A resolution scalg equal to 9, implying a sampling rate of 512 Hza@opted in the
conducted analysis. The estimated results demoashat such a low sample rate is sufficient to
estimate the unknown physical parameters incluthiedirst five modal frequencies. Resolution
scalej < 9 implies a sampling rate smaller than 512 Hzgctviwould result in a smaller number
of modal responses captured and would lead togedadentification error as noted in Figures 4
and 7 for examples 2 and 4.

(2) In all of the examples, there is no false alarrthmidentified results for all other elements
with time-invariant flexural rigidity, while smafluctuations occur at intervals in all the time
histories of identified results of all elements.e$h time instances correspond to the moments
when the response of the whole structure is at esrssing, which indicates that larger errors
may occur by using response data close to zera fiilme structure undergoing the present type
of excitation has a single dominating responseueagy leading to such a phenomenon. That
means such error will be reduced or will not existhe responses are not at zero crossing
simultaneously.

(3) The error of identification in the whole time petits very small except at the beginning
and end of the time duration, where there are Ifwgptuations. This may be due to the fact that
the wavelet representation of the response initbieand last few data points doesn'’t satisfy the
periodic assumption as required in Equation (1RjtHer research is required to reduce this type
of error.

(4) The proposed identification algorithm requires nueesients of displacement responses
theoretically, while most practical applicationsquee acceleration responses for the
identification. Several methods [36] have been tped to reduce the numerical integration
error from acceleration to displacement. The dgualent of the present algorithm with direct
use of acceleration responses should be furthdiestu

(5) Results not shown indicate that small local chargfea~3 % can still be identified using
the proposed approach. However, when normal rangmise is included in the responses, the
proposed method does not perform satisfactorilyis it because the solution is based on
least-squares method and the random error in tlesumement remains in the identified results
as errors in the identified time histories. The ufoh could be obtained using an
over-determined set of equations with regularizatio the solution [37].

(6) The present study makes use of the whole measutdorethe identification. For the case
of incomplete measurement, the number of equatioBquation (14) will be reduced with the
number of measurementn, which may not be sufficient to identify a largeinmber of
unknowns. This problem can be overcome by assuthi@gharacteristics of the system to be
time-invariant over several consecutive time inseésnmm, and the linear equations from
Equation (14) for thenm time instances can be grouped up to form a setahm simultaneous
equations in Equation (16) for a least-squarestisoluA higher sampling rate would provide
sufficient information from a few sensors to forine tover-determined set of Equation (16).

6. Conclusions

This paper addresses the identification of timesvay physical parameters from the forced
vibration response of beam structures based on letaansform. The use of incomplete
measurement in the proposed method can be realithdhe use of a high sampling rate. A
parameter identification algorithm is establisheddd on the Wavelet-Galerkin method, and the
complete identification procedure is demonstratsithgifour scenarios with a cantilever beam.
Simulation results indicate that the proposed teglnhas an excellent capability for tracking
smooth, periodic and abrupt changes of parametdheibeam structure.
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