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Abstract. A calculation of transients in the electromagnedittuator with the controlled

supplier has been presented in the paper. The miadiedd model of the actuator has been
created with using the finite element method (FEBHd verified experimentally. The

mathematical models of the supplier and contrdii@ve been coupled with the field-circuit
model of the actuator using Matlab/Simulink packadée circuit parameters have been
obtained from the FEM calculations. The algorithitthe proportionally-integral (P1) controller

operation has been implemented. The transientsositipn, current and force, for different
controller parameters, have been obtained. Theuletion results have been verified by the
measurement tests.

Keywords: control systems, linear actuators, coupled fiétduit model, modelling of
mechatronic systems.

Introduction

The electromagnetic linear actuators and motorsuaezl as a linear drives in different
applications [1, 2], e.g. suspension systems, datigfands [3], generators of vibrations [4] and
oscillators [5, 6]. There are growing demands fachs special electric motors. In each
application (e.g. CNC machines) the proper cordirad supply systems are needed. In most
cases an ordinary Pl or PID controllers can beiappThe modelling of such controllers
becomes more important due to design costs. Instekihg of the physical control system, we
can build and investigate its mathematic model.sTiwe can study transients in the system
including changing the controller parameters. Aftds, we can implement the parameters in
the real prototype. The limits of the parametensld¢de obtained by calculations. Thus, we are
able to introduce them in the tests without destrgyhe physical models.

In this paper we consider the electromagnetic aoty&ig. 1) build in the controlled fatigue
stand. The box of the control-supplying systemrespnted on the right side of Fig. 1. We can
see that the controlled supplier is very small.

G T

Fatigue test stand j g

s Control and :
= supply system s

Electromagnetic
actuator

Fig. 1. The actuator in the fatigue stand with the cofatbsupplier
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Both, mathematical and physical models have beem dudthin the presented work. The
parameters of the electromagnetic actuator, whickisible on he left side of Fig. 1, have been
calculated with the finite element method (FEM) fiifough the magnetic field analysis. We have
used the FEMM software [8]. The whole device ieuator and its control supplier has been
simulated with Matlab/Simulink software package. Wave modelled the PI controller and the
pulse width modulation (PWM) power supplier and mhathematical model of the actuator (Fig.
2). The stresses in the lever of the fatigue stamdl the tested specimen were calculated with
Femap software [9].

Modelling of the actuator transients

For the modelling of the actuator transients thikage u excitation has been forced. In our
modelling, the runner positiom and the current are the functions to be calculated. The
Lagrange method has been adopted for the formualatfothe ordinary differential equations
[10, 11], which describe the unknown quantities:
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where the parameters aig; k. — the spring and fatigued specimen constant réspsc D —
the friction coefficientin — mass of the runnek = 2 — velocity of the runner(i, zZ) — force
characteristicR — coil electrical resistance,,(i,z) - dynamic inductance characteristig(i, z)

- linkage flux characteristic. The characterisiidsthe functions~(i, 2), L,G,2), ¥(i,z2) have
been presented in Figs. 3 and 4. The values akthaining parameters are given in Table 1.
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Fig. 2. The model of the actuator with the controlled digop
The integral parameters of the magnetic field dheust, magnetic flux and winding

dynamic inductance. They have been obtained framtagnetic flux density distribution. We
have used FEM calculations. The geometry of theisdot can be presented in the axial
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coordinate system, ¢, z. The thrust has been obtained using the expredsiothe Lorentz
force [12]:

F=2r] (0,83 - 3,81 Jrdrdz (3)

S

The flux value has been calculated as the integfrdhe magnetic vector potential [13]. The
dynamic inductance is very important in the simaolatof the operation of the actuator under
voltage supplying. Its value has been calculatethascurrent derivative of the flux linkage
[14]:

_d¥(i,2)

di ®)

P = Z j Ad, (4) L,

k=1

whereN is the number of turns in the actuator winding.

The equations (1) and (2) have been solved in tla#iad/Simulink package [15]. The
supplying through the pulse width modulation (PW8#§stem and the control systems were
included in the mathematical model (Fig. 2).

The force characteristic (Fig. 3a) is important flee control algorithm. The thrust values
change linearly vs. the current excitation valu€ke thrust characteristic is only slightly
nonlinear for the high current intensity in the igation coil. The flux inside the winding
depends almost only on the mover position (Fig. 3me dynamic inductance, which is very
important value in the transient model, is almaststant (Fig. 4a). The characteristic in Fig.
4b, which is used in the calculation of the elewtotive force (EMF), depends only on the
mover position. The smooth shapes of the presesttathcteristics are very convenient for the
quick and precise analysis of the actuator tramsien
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Fig. 3. The characteristics verso mover positzaand the excitation currehof: a) thrustF, b) flux ¥

z [mm]

The parameters in Table 1 have been obtained both measurements and calculations.
The resistance values of the coil and the moversnmase been measured before the other
parameters determination. The friction coefficiealue has been assumed taking into account
the mover and stator materials. The sum of thengpeand specimen constants has been
calculated including the stress values (Femap soé\9]).

Table 1. Constant parameters of the field-circuit model

Parameter Resistance | Mover mass | Friction coefficient Constant
R[Q] m{qg] D [Ns/nf] ks + k. [N/mm]
Value 8.27 255 50 53
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Fig. 4. The characteristics of: a) dynamic inductahgeb) position derivative of the magnetic flux

Calculation results

The electromagnetic actuator destination is to ggeesinusoidal wave of the runner
position. The amplitude of the runner stroke and the oscillation frequencly can be
established. The accomplishment of this requiresmdatand a feedback loop from the runner
position. The difference between the referencetiposivalue and the measured position of the
runner is introduced to the PI controller (Fig. Phe output of the controller is the PWM duty
cycle. Values of the PI controller parameters wabtained by using “Constrain Signal” block
from Matlab/Simulink (Fig. 2). The optimization mess was made for the following
parameters of step response: rise tirme0.0125 s, settling timg= 0.05 s and overshobt, =
5% [16]. We obtained suitable factors for the cohBystem:K, = 236.4 andK; = 12810
(Fig. 5a).
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Fig. 5. Calculation results of the runner step response fo
a)K, = 236.4,K = 12810, bK,= 156.4,K; = 12810

In Fig 5a the step response characteristic of tibmer position for optimal values of PI
controller parameters is presented. The curve ll&lfthe assumed requirements. For
comparison, in Fig. 5b the step response wave for-aptimal values of Pl controller
parameters is presentel,(= 156.4 and&; = 12810). The lower value ¢, parameter leads to
increase the overshoot and settling time.

Many calculations of the actuator transients haaenbcarried out, using the presented model
(Fig. 2). In Fig. 6, the position of the runner atwatrent waves for assumed amplitude and
frequency are presented. Measured and calculatptitades of the position waves (Fig. 6a) are
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slightly lower than the assumed ones. This is dube fact that the control system doesn't track
the given sinusoidal wave. In Fig. 6b current waf@sassumed amplitudaz = 4 mm and
frequencyf = 10 Hz are presented. In both, measured and e#dclicases, the waves are
similar. Slight differences are visible between mead and calculated values of generated
forces (Fig. 7). The measured current and forceewave not smooth (Figs. 6b and 7). It is due to
controller presence, which compensates the frickisnes and disturbances in the mechanical
system.
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Fig. 6. Runner position (a) and current waves (b)ferlO Hz and\z=4 mm
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Fig. 7. Thrust vs. time for: a)= 20 Hz andAz= 2 mm, b)f = 10 Hz andAz= 4 mm

Conclusions

The results obtained from the measurement of tiheecuvalues of runner position and of
force are in good agreement with the simulated mizaleones. The differences do not exceed
several percent and are mainly in the force waviksewed. Mechanical and electrical
characteristics of the controlled system have béetermined. There are only small non-
linearities visible in the characteristics of théegral parameters vs. runner position and current
value.

The presented Pl controller meets the requiremeigsability and precision in the runner
position controlling. The current and force wave aot smooth, which is mainly due to random
dissipation forces, which disturb the runner movetne

The field-circuit model can be used in the tunirfgthee controller adjustment and in the
prediction of the electrical and mechanical paramsetof the fatigue stand with build in
electromagnetic actuator and control system. Ortheofnost advantages of the model is short
calculation time. For the computer with 4 GB RAMMAE Phenom Il X4 955 processor
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(3.2 GHz) we need only few seconds to simulatectiraplete transients of the whole system
(including PWM modeling).
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