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Abstract. In this paper the Hamiltonian approach is applaethe analysis of the nonlinear free
vibration of a tapered beam. The considered prolgessents the governing equation of the
nonlinear, large-amplitude free vibrations of tleaims. The effect of vibration amplitude on the
nonlinear frequency is considered. This analytia&lpresentation provides excellent
approximations to the exact solutions for the whodge of the oscillation amplitudes,
reducing the respective error of angular frequentycomparison with the Hamiltonian
approach. It is predicted that those methods cahviide application in engineering problems
as indicated in this paper.
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Introduction

Many aspects have to be taken into consideratidherdesign of structures to improve their
performance and extend their life, especially inogpace vehicles, bridges and automobiles.
One aspect of the design process is the dynampomes of a structure. The dynamics of
distributed parameter and continuous systems bldams, are governed by linear and nonlinear
partial differential equations in space and time.

Kreiger [1] studied the large-amplitude vibratioh simply supported beams wherein the
governing partial differential equations were regtlito ordinary differential equations and the
solution was obtained in terms of elliptic functonsing a one-term approximation. Burgreen
[2] used the classical continuum approach for #éingd-amplitude vibration problems of hinged
beams. Ritz—Galerkin technique was used to soletiverning nonlinear differential equation
of dynamic equilibrium for free and forced vibratiof simply supported beams and plates by
Srinivasan [3-4]. Evensen [5] extended the studyviarious boundary conditions using the
perturbation method.

A review of the formulations of the 1970s relatedstructural vibrations was presented by
Reddy [6]. Sathyamoorthy [7-8] tried to completee ttvork on classical methods for the
analysis of beams with material, geometric androtyyges of nonlinearities and also on finite
element analysis of nonlinear beams under statit dymamic loads. Mei studied the finite
element formulations for large-amplitude vibratiasfsbeams and plates. In all his works the
axial deformation was not considered and the aeeaxipl force was assumed to be a constant
over the element length [9-10].

Singh et al [11] reported a formulation for the loear free vibrations of beams, wherein
the dynamic finite element matrix equations werduped to a scalar equation (using the
converged mode shape), which was then solved udirgct numerical integration and
concluded that the axial displacements cannot g&eaed in any nonlinear vibration analysis.
Klein [12] used finite element approach and RayleRjtz for analyzing the vibration of the
tapered beams. A dynamic discretization techniques applied to calculate the natural
frequencies of a non-rotating double-tapered beased on both the Euler-Bernoulli and
Timoshenko beam theories by Downs [13]. Goorman [d4jiven the governing differential
equation corresponding to fundamental vibration enofla tapered beam. Generally, finding an
exact or closed-form solution for nonlinear probdeis very difficult especially on beam
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vibrations. Hoseini et al. [15] studied nonlinedabration behavior of tapered beams using
homotopy analysis method. Bayat et al [16] devedajpe work on the analytical studies on the
nonlinear vibration of tapered beams by using max-approach and homotopy perturbation
method (HPM). Shahidi et al [17] used variationppach method and amplitude frequency
formulation to obtain an approximate solution foe tvibration of tapered beams. In the recent
decades many newanalytical and numerical approaches have been tigaésd. The most
useful methods for solving nonlinear equationspengurbation methods. They are not valid for
strongly nonlinear equations and they have manytstimings. Many new techniques have
appeared in the open literature to overcome the@bmings of traditional analytical methods
such as Energy balance [18-22], Variational apgrd28-24], Iteration perturbation [25], the
Homotopy perturbation method [26] and other ane#ytand numerical methods [27-30].

The main objective of this study is to obtain thelgtical expression for nonlinear vibration
of tapered beams. First, the governing nonlineatigladifferential equation using Galerkin
method was reduced to a single nonlinear ordindfgrdntial equation. The later equation was
solved analytically in time domain using Hamiltomi@pproach. Finally, Hamiltonian aproach is
compared with the exact solution. It can be obskm®mt Hamiltonian approach results are
accurate and require smaller computational effant.excellent accuracy of the Hamiltonian
approach (HA) results indicates that those methwads be used for problems in which the
strong nonlinearities are taken into account. Imatisionless form, Goorman gives the
governing differential equation corresponding tndamental vibration mode of a tapered beam
[14]:

2 2 2
(zt—gj+gl{u2(zt—gj+u(z—?j j+u+glu3:0 1)

where U is displacement and; and &, are arbitrary constants. Subject to the followinigial
conditions:
du(0) -0

u(0)=A, p

2)

Fig. 1. Schematic representation of a tapered beam
Basic idea of the Hamiltonian approach

Previously, He [31] had introduced the Energy Batamethod based on collocation and the
Hamiltonian. This approach is very simple but stigrdepends upon the chosen location point.
Recently, He [32] has proposed the Hamiltonian apgin to overcome the shortcomings of the
energy balance method. This approach is a kindnefgy method with a vast application in
conservative oscillatory systems. In order to &athis approach, consider the following
general oscillator:

u”"+f (u,u’,u”)=0 3)
with initial conditions:

u(0)=A, u’'(0)= 0. (4)
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Oscillatory systems contain two important physjgatameters, i.e. the frequeneyand the
amplitude of oscillatiorA. It is easy to establish a variational princigle Eq. (3), which reads;

I) = EM{—%U’Z +F(u)}dt )

where Tis period of the nonlinear oscillato<?!:/au =f .

In the Eq. (5),}/2u’2is kinetic energy ané (u) potential energy, so the Eq. (5) is the least
Lagrangian action, from which we can immediatelya@iits Hamiltonian, which reads:

H ) =%u’2+F(u) = constant (6)

From Eqg. (6), we have;
oH
—=0 7
A )
Introducing a new functiont (u) , defined as;

T/4

- 1, 1

Hu)= |{=u?+F(u)dt ==TH 8
(W) Oj{zu * (u)} . )
Eq. (7) is, then, equivalent to the following one;

o (oH

—~|Z—1l=z0

GA[GTJ ©)

or

o oH

|2 _|{=0

aA[@(J/w)J o

From Eq. (10) we can obtain approximate frequeneyptaude relationship of a nonlinear
oscillator.

Application
Solution using Hamiltonian approach

The Hamiltonian of Eq. (1) is constructed as:

2 2
poolfdu +£el au U2+—1U2+—182U4 (11)
2\ dt 2 “adt 2 4
Integrating Eq. (11) with respecttérom O toT /4, we have:
SR PN PR EREA 12)
2(dt ) 27 dt 20 477
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Assume that the solution can be expressed as:
u(t) = Acost ) (13)
Substituting Eq. (13) into Eqg. (12), we obtain:

lAza)Zsinz(a)t)Jr—;gl Ao?sin?(ot) cosz(a)t)+—; A2 cog(wt) +

— T/4| D
H= 1 dt
+Zng4cos4(a)t)
(14)
= Elz EAza)sinthr—le1 A% osint codt+—— R oszt+—152A4cos“t dt
2 2 20 Ay
=+la)A27Z'+ia)A481ﬂ'—lA2ﬂ'+—3A48271'
8 32 & 64w
Setting:
o oH 1 , 1 .5 5,01 3
— | |=—ZAz0*-ZgA +=AT+—g,A 15
8A{8(]/a))J A i T (13)
Solving the above equation, an approximate freguexsca function of amplitude is equal
to:
@\/(31A2+2)(332A2+4) 5
2 (aA°+2)
Hence, the approximate solution can be readilyinbth
J(2+5,8%)(4+ 3,2
ut)=Aco 2 ( - )( : ) t (17)

2 (2+5,A%)
Results and discussions

The exact frequencyy, for a dynamic system governed by Eq. (1) can bivel, as
shown in Eg. (18), as follows:

A1+ g A%cos?t sint
Ocee =27) &2A [ o

\/Az (1-cos’t)(z,A %08t +£,A+2)

(18)

Some comparisons are presented to illustrate arify \tee accuracy of the Hamiltonian
approach. Table 1 presents the comparison of frefeg obtained with the HA and the exact

ones for different value oA, g ande,. The maximum relative error between the HA results
and exact results is 2.6846%. Figure 2 and 4 progid®mparison of analytical solution of
u(t) based on time with the numerical solution and #g® and 5 show comparison of
analytical solution ofdu/dt based on time with the exact solution. From Fidgs.the motion of

the system is a periodic motion and the amplitufievibration is a function of the initial
conditions. Comparison of frequency correspondingarious parameters of amplitud® @nd
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&, forg, =0.5 has been studied in the figure (Fig. 6). The ¢ffésmall parameters, on the

frequency corresponding to various parameters gflitnde (A) has been studied in Fig. 3 for
g, =1 . It is evident that the Hamiltonian approach eitsian excellent agreement with the

exact solution and quickly convergent and is védida wide range of vibration amplitudes and
initial conditions. The accuracy of the results whathat the Hamiltonian approach can be

potentiality used for the accurate analysis ofraghp nonlinear oscillation problems.

Table 1. Comparison of frequency corresponding to various paemief system

Constant parameters Approx_imate Exa_ct Relative error
solutior solutior %
A & & @ pa O Bt e Cua
@ gy
0.1 0.1 0.1 1.0001 1.0005 0.0374
0.1 1 0.2 0.9983 0.9983 0.0002
0.5 0.5 1 1.0572 1.0573 0.0084
0.5 1 0.5 0.9860 0.9870 0.1018
1 1 1 1.0801 1.0904 0.9382
1 0.5 0.2 0.9592 0.9623 0.3262
2 0.4 0.2 0.9428 0.9593 1.7212
2 1 0.8 1.0646 1.0917 2.4853
2 1 0.2 0.7303 0.7504 2.6846
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Fig. 2. Comparison of analytical solution aft) based on time with the exact solution for
g=1, =05, A=0E

du
dt

time

Fig. 3. Comparison of analytical solution dfi/dt based on time with the exact solution for
g=1,¢6=05 A=0E
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Fig. 4. Comparison of analytical solution afit) based on time with the exact solution for
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Fig. 5. Comparison of analytical solutioni/dt based
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Fig. 7. Comparison of frequency corresponding to varioasameters of amplitude (A) fog, =1
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Conclusions

In this paper, a novel method has been used tanobtelytical solutions for the nonlinear
vibration of a tapered beam. The analytical sohsgigyield a thoughtful and insightful
understanding of the effect of system parametedsimitial conditions. As shown in this study
an excellent agreement between the approximateudresies and the exact one are
demonstrated and discussed. Hamiltonian approachbeaa powerful mathematical tool for
studying the strong nonlinear problems. Its exoéleecuracy in the whole range of oscillation
amplitude values is one of the most significantdess of this method. Hamiltonian approach
requires smaller computational effort and onlyraylg iteration leads to accurate solutions. The
successful implementation of the Hamiltonian apphodor the large-amplitude nonlinear
oscillation problem considered in this paper furtbenfirms the capability of those methods in
solving nonlinear oscillation problems. We can sgighis approach as a novel and simple
method for oscillation systems, which provides asyeand direct procedure for determining
approximations to the periodic solutions.
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