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Abstract. Aiming at the most dangerous crack damage in structural health, a crack identification 
method based on wavelet finite element model and determinant transformation method is 
conducted. Natural frequencies of the structure with various crack locations and depths are first 
accurately obtained by means of wavelet finite element methods. Then, the actual structures are 
measured to gain vibration characteristics. Measured natural frequencies are used in a crack 
detection process, while crack location and size can be identified using determinant 
transformation method. The experimental example of a static beam with rectangle cross-section 
indicates that the current method is effective and accurate. The whole approach provides a 
powerful technology for practical application. 

Keywords: crack detection, vibration, wavelet finite element method, determinant 
transformation. 

 
1. Introduction 

 
Vibration-based methods have so far been intended for exploitation in structural crack 

detection [1-4]. In the presented approach, some signal features, such as change in natural 
frequencies, change in mode shapes, and change in amplitude of vibration have been taken into 
account. The natural frequency of a structure is most easily measured from accessible point on 
the static component and convenient to use. Also, such measurement method is fast, easy and 
inexpensive.  

The frequency-based method includes two procedures [1]. The first procedure is forward 

problem, which comprises the construction of crack model exclusively for crack section and the 

construction of a numerical structural model to gain crack detection database for natural 

frequencies. That is the determination of function 
sG  relationship between the first three natural 

frequencies 
sω
, crack normalized location β  and crack normalized depth α , as follows: 

)3 ,2 ,1(      ),( == sGss αβω             (1) 
The second procedure is referred to as inverse problem, which consists of the measurement of 

modal parameters and the detection of crack parameters. That is the determination of crack 
normalized location β  and depth α  as follows: 

)3 ,2 ,1(      )(),( 1
==

− sG ss ωαβ            (2) 

The scheme of crack identification problem is depicted in Fig. 1. 
In the forward problem studies, Nandwana [2] modeled the crack as a rotational spring and 

gave a semi-analytical solution for beams. Meanwhile, the finite element method (FEM) was 
employed for the identification of a crack in structures due to the fact that FEM is firmly 
established as a standard procedure for the solution of crack problems. Lele [3] employed finite 
elements to make a more efficient calculation for crack identification in a short beam with 
rectangular section. Because of the fact that the crack tip field displacement and stress have 
τ1  singularity (τ  denotes crack tip field radius in polar coordinates) and the traditional 
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FEM piecewise polynomial cannot approximate them accurately on a local area, a fine mesh and 
great amount of computational work is required when the traditional finite elements are used to 
describe the singular behavior of cracks. To overcome these difficulties, wavelets have been 
applied to finite element analysis because wavelet multiresolution theory provides a powerful 
mathematical tool for function approximation and multiscale representations. Unlike traditional 
FEM, Wavelet finite element method (WFEM) was utilized for model analysis of crack problems 
with good performance [5, 6]. According to linear fracture mechanics theory, the localized 
additional flexibility in crack vicinity can be represented by a lumped parameter element. The 
cracked beam is modeled by wavelet-based elements to gain crack detection database [5, 6]. 

 
Fig. 1. Scheme for crack identification 

 
With accurately measured frequencies after FFT, the solution of inverse problem for crack 

identification can be essentially an optimization problem. Several algorithms such as genetic 
algorithm [7], neural network [8], support vector machines [9], single-variable or multiobjective 
optimization algorithms [10, 11], fuzzy Gaussian inference technique [12], Bayesian parameter 
estimation [13], and frequency contour [14-16] were employed as optimization methods to 
minimize the errors between numerical simulation and experimental measurement.  

Due to the facts that frequency contour method is visualized and easy utilized in practice, it 
became mostly popular algorithm in crack identification problems. However, the 
three-dimensional surfaces of the natural frequencies are based on macro-calculation in different 
crack locations and sizes, which influence the efficiency of the method in terms of contour lines.  

In this paper, a crack identification algorithm based on wavelet finite element model and 
determinant transformation method is proposed. The natural frequencies of the structure with 
various crack locations and depths are first accurately obtained by means of WFEM. Then, the 
real structures are measured to gain vibration characteristics. Measured natural frequencies after 
FFT analysis are used in a crack detection process. Crack location and size can be identified 
using determinant transformation method. The experimental example of a static beam with 
rectangle cross-section indicates that the current method is effective and accurate. The whole 
approach provides a powerful technology for practical application. 
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2. Crack identification method using WFEM and determinant transformation 
 

2.1. Wavelet finite element method (WFEM) 
 

WFEM is a new FEM which combines wavelet multiresolution analysis and conventional 
finite element variation principle. The good properties of Daubechies wavelet scaling functions 
(Fig. 2) and wavelet functions in locality and smooth enable WFEM to approximate finite 
element solution space with minimum basis. In addition, the sequence of closed subspaces 
guarantee WFEM to converge without saturation property supposition, which takes convenience 
for algorithm development of adaptive WFEM. For a one-dimensional wavelet-based finite 
element, the nodal displacements can be represented by the shape functions, whose forms are as 
follows: 

φTN = ,                (3) 

where T  stands for the transformation matrix, and its elements are jit   [15]. φ  denotes the 

Daubechies wavelet [17] scaling function collection. After constructing wavelet-based shape 
functions, the forming procedures of the stiffness matrix 

eK  and the mass matrix 
eM  can be 

achieved as was done in the traditional FEM. The forms of both matrixes are represented as: 

yx dd )( )( T

 
LNDLNK

Ω
e ∫= ,            (4) 

yx ddρ    
T

 
NNM

Ω
e ∫= ,             (5) 

 
where L  and D  denote the generalized strain matrix and the elasticity matrix, respectively. ρ  
is the beam density. The superscript T  stands for the matrix or vector transpose.  

 
2.2. Modal analysis of a cracked beam  

 
A uniform beam with an open crack is shown in Fig. 3. L , h , and b  represent the length, 

height and width of the beam respectively. l  and a  are the crack location and crack size 
respectively. β  ( Ll /=β ) and α  ( ha /=α ) stand for the normalized crack position and 
normalized crack size respectively. 

Suppose that the crack is located between two wavelet finite elements, and the numbers of 
two nodes are i and i+1 respectively (See Fig. 4).  

The crack introduces a local flexibility that is a function of the crack depth, and the flexibility 

changes the stiffness of the beam. Rizos, Aspragathos, and Dimarogonas [18] represented the 

crack by a mass-less rotational spring with a computable stiffness Kt . The values of Kt  for 

various cross-sections were given by Dimarogonas [19]. The continuity conditions at the crack 

position indicate that the left node and right node have the same vertical deflection, 1+= ii yy , 

while their rotations 
iθ
 and 

1+iθ
 are connected through the stiffness matrix Kc  [20]: 










−

−
=

KtKt

KtKt
cK .             (6) 
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Fig. 2. Daubechies wavelet scaling function of D3  

(0: j=0, 1: j=1, 2: j=2, 3: j=3, 4: j=4, 5: j=5) 

 
Fig. 3. The model of cantilever beam with an open crack 

 
Fig. 4. Layout of the corresponding nodes around crack 

 
Hence, Kc  can be assembled into the global stiffness matrix of WFEM through employing 

a single degree-of-freedom of the vertical deflection of both nodes i and i+1. The global mass 
matrix of the cracked beam is equal to the uncracked one. 

For the cantilever beam shown in Fig. 3, the boundary conditions caused by fixed support are 
as follows: 

( ) 0=xw , ( ) 0=xwɺ , 0=x  or Lx =           (7) 

where w  is a lateral displacement, overdots indicate differentiation with respect to time.  
The boundary conditions caused by the crack are as follows: 
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where )(xwi  is lateral displacement on left side node of the crack, ] ,0[ lx∈ . )(1 xwi+  is 

lateral displacement on right side node of the crack, ] ,0[ lx∈ . E  is Young’s modulus, and I  

is inertia moment. 
Using the displacement-based formulation in conjunction with the principle of virtual 

displacement, the equations of the beam motion can be written as:  

0=+ KYYM ɺɺ ,              (9) 

where overdots indicate differentiation with respect to time, M  an K  are the global mass and 

stiffness matrix respectively. Y  ( [ ]nnyy θθ ,,,, 11 …= ) is the column vector of nodal 

displacements.  
Suppose that a time harmonic solution for the nodal displacements can be represented as: 

ts sinωAY = ,               (10) 

where A  is the amplitude of the nodal displacements, and sω  is the natural frequency. 

Substituting Eq. (10) into Eq. (9) leads to: 

{ } 0][ 2
=+− AKMsω .              (11) 

For non-trivial solutions: 

0)det( 2
=− MK sω ,             (12) 

where “det” denotes the determinant. Therefore the effective values of the natural frequencies 
can be found by solving generalized eigenvalues of Eq. (12). 
 
2.3. Determinant transformation 
 

In section B, the finite element model of cracked beam is modeled by using WFEM. The 
crack is represented as a rotational spring. Utilizing the determinant transformation method it 
transforms the vibration frequency equation into the quadratic equation with one unknown 
parameter: the rotational spring stiffness. Finding the roots of quadratic equations at different 
crack locations, the three curves of spring stiffness versus crack location are plotted. The point of 
intersection of the curves identifies the location and size of the crack.  

Suppose that the crack is located between two wavelet-based finite elements, and the 
numbers of two nodes are i  and 1+i , respectively. The spring stiffness Kt  was an unknown 
parameter of the vibration frequency equation, Eq. (12): 
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0=Θ                 (13) 

or: 

 (14) 
 

where, 2
ss ωλ = , )3 ,2 ,1( =s  are known. 

According to the determinant calculation properties, the left determinant of Eq. (14) was 
expanded by ith column and i+1th column, and the quadratic equation with one unknown 
number could be obtained: 

 

0)3()2()1( 2
=++ aKtaKta             (15) 

where: 

):2,:1(

0

0

)1:1,:1()1( ninina +−= ΘΧΘ          (16) 

):2,:1(

0

0

):1,:1():1,:1(

0

0

)1:1,:1()2( nininninina +++−= ΘΝΘΘΗΘ   (17) 

 

Θ=)3(a                (18) 

 
):,:( lkjiΘ  is the sub-matrix formed by the elements (from the ith row to jth row, and the 

kth column to lth column of Θ ).  








−

−
=

11

11
Χ , 




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−
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1
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
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The natural frequencies were taken into the Eq. (15), the corresponding spring stiffness Kt  
was obtained by finding the roots of Eq. (15). The same calculation was repeated in a different 
crack location β , so we can get three curves of Kt−β . The crossing points present the crack 
location β  (horizontal ordinate) and spring stiffness Kt  (longitudinal coordinate).  

Because the crack stiffness Kt  could be expressed as:  

)()(72 2

2

hafha

Ebh
Kt

π

=              (19) 

where: 

,)(4909.2)(332.7)(553.7

)(1773.5)(7201.3)(035.16384.0)(
654

32

hahaha

hahahahaf

+−+

−+−=
      (20) 
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taking Kt  into the Eq.(19), we can get the crack depth a . 
 
2. Experimental example 

 

In order to verify the usefulness of the developed method, the experimental equipment was 

built (Fig. 5). The cantilever beam with two crack cases is divided into 8 wavelet finite elements, 

D6 [15] during analysis. The geometric and material properties of the beam are: m 5.0=L , 

m 02.0=h , m 012.0=b , GPa 1.2=E , -3mKg 7860 ⋅=ρ  and 3.0=υ . Fig. 6 provides 

the relationship between sω , )3,2,1( =s  and possible normalized crack location using WFEM. 

  

 
(a) 

 
(b) 

Fig. 5. Experimental equipment: (a) Experimental setup; (b) Chart of measuring principle 

 
Fig. 6. Relationship between natural frequencies and crack location 
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In order to select the best testing location of a sensor, two facts are considered. Fig. 7 
illustrates the first three vibration shapes of the cantilever beam. The free end of the beam has the 
highest value of lateral displacement and acceleration, so the point near to the free end of beam is 
most sensitive to the vibration. On the other side, the same point is also the best place to be 
excited by hamper. Based on our experience, the best point of locating sensor is the place where 

Lx  is 0.38. 

 
Fig. 7. The first three vibration shapes of a cantilever beam 

 

The measured natural frequencies s*
ω , )3,2,1( =s  are used as the input parameters in 

order to produce the predicted crack variables ),( αβ . The intersection of the three curves in Fig. 
8 indicates possible crack position and crack size. When the three curves do not meet exactly, the 
midpoint of the three pairs of intersections is taken as the crack position and crack size. The 
estimations of crack variables are given by Table 1. The results based on WFEM and determinant 
transformation indicate that the normalized error of crack location is less than 2%, while the error 
of crack depth is less than 13%.  

 
Fig. 8. Predicted crack variables for the two crack cases 

 
Table 1. Predicted crack variables for the two crack cases 

No. 

Crack 
location 
β  

Crack 
size 

ha  

*β  ha*  
β error 

% 

ha error 

% 

1 0.4 0.2 0.38 0.33 2.0 13.0 

2 0.4 0.4 0.39 0.48 1.0 8.0 
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3. Conclusions 

 
Utilizing the properties of determinant transformation, this paper deduced the quadratic 

equation with one unknown parameter: the rotational spring stiffness from the vibration 
frequency equation. The inverse problem of crack identification can be represented as solving for 
the roots of quadratic equations at different crack locations. Experimental investigations verify 
that the proposed method can be utilized to detect crack location as well as crack size with high 
accuracy. This study provides a new method for the prognosis and diagnosis of cracks in various 
structures. 
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