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Abstract. Aiming at the most dangerous crack damage in strakchealth, a crack identification
method based on wavelet finite element model anéradnant transformation method is
conducted. Natural frequencies of the structuré wétrious crack locations and depths are first
accurately obtained by means of wavelet finite €etmethods. Then, the actual structures are
measured to gain vibration characteristics. Meabunatural frequencies are used in a crack
detection process, while crack location and size ¢e identified using determinant
transformation method. The experimental exampla sfatic beam with rectangle cross-section
indicates that the current method is effective andurate. The whole approach provides a
powerful technology for practicalpplication.

Keywords: crack detection, vibration, wavelet finite elemembethod, determinant
transformation.

1. Introduction

Vibration-based methods have so far been intendedexploitation in structural crack
detection [1-4]. In the presented approach, sorgaasifeatures, such as change in natural
frequencies, change in mode shapes, and changepititide of vibration have been taken into
account. The natural frequency of a structure istreasily measured from accessible point on
the static component and convenient to use. Alsch sneasurement method is fast, easy and
inexpensive.

The frequency-based method includes two procedudfesThe first procedure is forward
problem, which comprises the construction of craxddel exclusively for crack section and the
construction of a numerical structural model tongarack detection database for natural
frequencies. That is the determination of functigp relationship between the first three natural

frequenciesq_, crack normalized locatiorp and crack normalized deptt, as follows:
0,=G,(f.a) (s=1293 (1)

The second procedure is referred to as inversdgrmlwhich consists of the measurement of
modal parameters and the detection of crack pasmeThat is the determination of crack
normalized locationg and deptha as follows:

(B.a)=G, (o)) (s=123) 2

The scheme of crack identification problem is degmdn Fig. 1.

In the forward problem studies, Nandwana [2] modéfe crack as a rotational spring and
gave a semi-analytical solution for beams. Mearayhihe finite element method (FEM) was
employed for the identification of a crack in stures due to the fact that FEM is firmly
established as a standard procedure for the solafigrack problems. Lele [3] employed finite
elements to make a more efficient calculation faack identification in a short beam with
rectangular section. Because of the fact that thekctip field displacement and stress have

\/? singularity (r denotes crack tip field radius in polar coordisatand the traditional
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FEM piecewise polynomial cannot approximate thenueately on a local area, a fine mesh and
great amount of computational work is required wtrentraditional finite elements are used to
describe the singular behavior of cracks. To owmecdhese difficulties, wavelets have been
applied to finite element analysis because wavelgtiresolution theory provides a powerful
mathematical tool for function approximation andltisaale representations. Unlike traditional
FEM, Wavelet finite element method (WFEM) was mélil for model analysis of crack problems
with good performance [5, 6]. According to lineaadture mechanics theory, the localized
additional flexibility in crack vicinity can be regsented by a lumped parameter element. The
cracked beam is modeled by wavelet-based elemeg&in crack detection database [5, 6].

Forward Problem -

Mumerical moedel

FEM

Crack detection

database

/ My

|Crack Parameters

Physical model

| Cracked structure

Test
4 Natural

= freauencies

Fig. 1. Scheme for crack identification

With accurately measured frequencies after FFT stietion of inverse problem for crack
identification can be essentially an optimizatiowwlgem. Several algorithms such as genetic
algorithm [7], neural network [8], support vectoachines [9], single-variable or multiobjective
optimization algorithms [10, 11], fuzzy Gaussiafemnence technique [12], Bayesian parameter
estimation [13], and frequency contour [14-16] wemployed as optimization methods to
minimize the errors between numerical simulatiod experimental measurement.

Due to the facts that frequency contour methodssalized and easy utilized in practice, it
became mostly popular algorithm in crack identiima problems. However, the
three-dimensional surfaces of the natural frequenare based on macro-calculation in different
crack locations and sizes, which influence thecifficy of the method in terms of contour lines.

In this paper, a crack identification algorithm &@én wavelet finite element model and
determinant transformation method is proposed. fdteral frequencies of the structure with
various crack locations and depths are first acelyr@btained by means of WFEM. Then, the
real structures are measured to gain vibrationadhearistics. Measured natural frequencies after
FFT analysis are used in a crack detection proc&ssk location and size can be identified
using determinant transformation method. The expemial example of a static beam with
rectangle cross-section indicates that the cumegthod is effective and accurate. The whole
approach provides a powerful technology for prattipplication.
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2. Crack identification method using WFEM and deter minant transfor mation
2.1. Wavelet finite element method (WFEM)

WFEM is a new FEM which combines wavelet multiresion analysis and conventional
finite element variation principle. The good prapes of Daubechies wavelet scaling functions
(Fig. 2) and wavelet functions in locality and sifo@nable WFEM to approximate finite
element solution space with minimum basis. In aoldjtthe sequence of closed subspaces
guarantee WFEM to converge without saturation pitypgipposition, which takes convenience
for algorithm development of adaptive WFEM. For medalimensional wavelet-based finite
element, the nodal displacements can be represbytie shape functions, whose forms are as
follows:

N =oT, (3)
where T stands for the transformation matrix, and its &lats aretij [15]. ¢ denotes the
Daubechies wavelet [17] scaling function collectidtfter constructing wavelet-based shape
functions, the forming procedures of the stiffnesstrix K, and the mass matrix1, can be

achieved as was done in the traditional FEM. Thm$oof both matrixes are represented as:

K, = L(LN)TD(LN)dXdy, 4)

;
Me=LpN Nd,d,, (5)

where L and D denote the generalized strain matrix and theieigsinatrix, respectively.p
is the beam density. The superscript stands for the matrix or vector transpose.

2.2. Modal analysis of a cracked beam

A uniform beam with an open crack is shown in Bg.L, h, and b represent the length,
height and width of the beam respectivelyand a are the crack location and crack size
respectively. 5 (p=1/L) and o (a=a/h) stand for the normalized crack position and
normalized crack size respectively.

Suppose that the crack is located between two wavieite elements, and the numbers of
two nodes areandi+1 respectively (See Fig. 4).

The crack introduces a local flexibility that i§umction of the crack depth, and the flexibility
changes the stiffness of the beam. Rizos, Aspragatind Dimarogonas [18] represented the
crack by a mass-less rotational spring with a cdatga stiffnesskt. The values ofkt for
various cross-sections were given by Dimarogon8s [he continuity conditions at the crack
position indicate that the left node and right nbdee the same vertical deflectiop,=vy, ,,

while their rotationsg, and ¢, are connected through the stiffness matix [20]:
Kt —Kt
K, = _ (6)
- Kt Kt
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Fig. 2. Daubechies wavelet scaling function of D3
(0:j=0, 1:j=1, 2:j=2, 3:j=3, 4:j=4, 5:j=5)
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Fig. 3. The model of cantilever beam with an open crack

14 Kt

Fig. 4. Layout of the corresponding nodes around crack

Hence, Kc can be assembled into the global stiffness mafrlWFEM through employing
a single degree-of-freedom of the vertical deftattof both nodes andi+1. The global mass
matrix of the cracked beam is equal to the uncréckes.

For the cantilever beam shown in Fig. 3, the bomyndanditions caused by fixed support are
as follows:

w(x)=0, Wx)=0, x=0 or x=L ©)

where W is a lateral displacement, overdots indicate diffiéiation with respect to time.
The boundary conditions caused by the crack afellasvs:
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W, (X) = W4 (X)

d’w (x) d’w,,(X)
dg?  dp?

®)

d*w; (x) _ d°w,, (%)

dg?® dg®

dw (x)  El d*w () dw, (%) _

dg  KiL dg? dg 0

where w (x) is lateral displacement on left side node of thack, X € [O,1]. w ,(X) is
lateral displacement on right side node of thelgrace [0,1]. E is Young's modulus, and

is inertia moment.

Using the displacement-based formulation in cortjonc with the principle of virtual
displacement, the equations of the beam motiorbeanritten as:

MY +KY =0, (9)
where overdots indicate differentiation with resdedime, M an K are the global mass and
stiffness matrix respectivelyY ( =[y1,¢91,..., yn,Hn] ) is the column vector of nodal

displacements.

Suppose that a time harmonic solution for the ndggdlacements can be represented as:
Y = Asino,t, (10)
where A is the amplitude of the nodal displacements, amd is the natural frequency.
Substituting Eq. (10) into Eq. (9) leads to:

[-0.*M +K]{A}=0. (11)
For non-trivial solutions:
detK - o *M) =0, (12)

where “det” denotes the determinant. Thereforeefffiective values of the natural frequencies
can be found by solving generalized eigenvaludsgpf(12).

2.3. Deter minant transfor mation

In section B, the finite element model of crackezhin is modeled by using WFEM. The
crack is represented as a rotational spring. lhiizhe determinant transformation method it
transforms the vibration frequency equation inte tjuadratic equation with one unknown
parameter: the rotational spring stiffness. Findimg roots of quadratic equations at different
crack locations, the three curves of spring st#fneersus crack location are plotted. The point of
intersection of the curves identifies the locatéonl size of the crack.

Suppose that the crack is located between two wabelsed finite elements, and the
numbers of two nodes are and i +1, respectively. The spring stiffned€t was an unknown
parameter of the vibration frequency equation, (&8):
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lo|=0 (13)
or.
ko kg 5 B A
ko =dom 5 Ki ko =l moy <Kt : : 5
II‘—J'+1 ST ﬁmf”Hl L Kr k:’+1,1’+1 - ;"mf”1'+1,1'+1 + Kf
kn,l B ;‘:’m;”n,l o o o o kn,n " /?'m;”n,n

(14)

where, 4, =, (s=123) are known.

According to the determinant calculation propertige left determinant of Eq. (14) was
expanded hyith column andi+1th column, and the quadratic equation with onenomin
number could be obtained:

a()Kt*> +a(@Kt+a(3)=0 (15)
where:
0
ad=@@anl:i-1) X O@ni+2:n) (16)
0
0 0
a@=eLnli-) H OLni+ln+@@QLnli) N OLni+2:n) a7)
0 0
a(3)=|0| (18)

O(:j,k:l) is the sub-matrix formed by the elements (fromitheow tojth row, and the

kth column tdth column of ®). X={:L } H={1}, N={ l]
-1 1 -1 1
The natural frequencies were taken into the Eq), th® corresponding spring stiffnedst
was obtained by finding the roots of Eq. (15). Baene calculation was repeated in a different
crack location £, so we can get three curves gf— Kt. The crossing points present the crack
location S (horizontal ordinate) and spring stiffnes& (longitudinal coordinate).
Because the crack stiffnedst could be expressed as:

Kt = bhzzE (19)
72z (a/h)" f (a/h)
where:
f (a/h) = 0.6384- 103%a/h) + 3.7201a/h)* -5.1773a/h)° (20)

+ 7553a/h)* — 733%a/h)® + 24909a/h)®,
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taking Kt into the Eq.(19), we can get the crack depth

2. Experimental example

In order to verify the usefulness of the developesthod, the experimental equipment was
built (Fig. 5). The cantilever beam with two crazdses is divided into 8 wavelet finite elements,
D6 [15] during analysis. The geometric and matepiaperties of the beam ard:= 0.5m,
h= 002m, b= 0012m, E= 2XGPa, p=7860Kg-m® and v=0.3. Fig. 6 provides
the relationship betweew,, (s=123) and possible normalized crack location using WFEM.

]
tin
T

signal conditioner Data acquisition

4

Charge amplifier Computer

card

(b)
Fig. 5. Experimental equipment: (a) Experimental setupQlhart of measuring principle
2800

@ frad/sy

Fig. 6. Relationship between natural frequencies and dazktion
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In order to select the best testing location ofeassr, two facts are considered. Fig. 7
illustrates the first three vibration shapes of¢hatilever beam. The free end of the beam has the
highest value of lateral displacement and accéteraso the point near to the free end of beam is
most sensitive to the vibration. On the other sitie, same point is also the best place to be
excited by hamper. Based on our experience, theplog® of locating sensor is the place where
x/L is 0.38.

Mode 1

0 02 04 06 08 1
x/L

Fig. 7. The first three vibration shapes of a cantilevearh

The measured natural frequencieﬁs , (s=123) are used as the input parameters in
order to produce the predicted crack variab{¢s ) . The intersection of the three curves in Fig.
8 indicates possible crack position and crack $ileen the three curves do not meet exactly, the
midpoint of the three pairs of intersections isetalas the crack position and crack size. The
estimations of crack variables are given by Tablehe results based on WFEM and determinant
transformation indicate that the normalized erffarrack location is less than 2%, while the error
of crack depth is less than 13%.

x 10

(&) Case 1 (b) Case 2
Fig. 8. Predicted crack variables for the two crack cases

Table 1. Predicted crack variables for the two crack cases

Crack Crack
No. location size Vs a*/h Berror  a/herror
B a/h % %
1 0.4 0.2 0.38 0.33 2.0 13.0
2 0.4 0.4 0.39 0.48 1.0 8.0
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3. Conclusions

Utilizing the properties of determinant transforimat this paper deduced the quadratic
equation with one unknown parameter: the rotatiosiling stiffness from the vibration
frequency equation. The inverse problem of craekiification can be represented as solving for
the roots of quadratic equations at different criadations. Experimental investigations verify
that the proposed method can be utilized to deteak location as well as crack size with high
accuracy. This study provides a new method foptisgnosis and diagnosis of cracks in various
structures.
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