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Abstract. The paper proposes a method of continuous definition of imbalance magnitude of a 
rotating rotor in process of its operation on the basis of analysis of amplitude of the radial fluc-
tuations, which is measured (identified) as a distance between rotation and symmetry axes of a 
rotor. 
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The amplitude of radial oscillations of a rotating rotor may be determined in the context of 
continuous systemic definition of parameters [1-3] as distance between axes of rotation and 
symmetry of a rotor (Fig. 1) in the form [4-6]: 
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r1, r2 r3 – radiuses-vectors of points A, B, C on a surface of the rotor, which are controlled by 
sensors D1, D2, D3 accordingly (Fig. 1); 

χ1, χ2, χ3 – angles between radiuses-vectors r1, r2 r3. 
D1, D2, D3 – sensors which supervise distances s1, s2, s3 up to opposite points A, B, C on sur-

faces of a rotor and also linear speeds V1, V2, V3 of these points. 
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Geometrical construction, presented in Fig. 1, b, allows to compose and solve the equations 
system in which radiuses-vectors r1, r2 r3 and angles χ1, χ2, χ3 between them are  decision vari-
able, and directly measured by sensors D1, D2, D3 magnitudes s1, s2, s3, V1, V2, V3 are coeffi-
cients changing at a rotor rotation [2, 6]. 

 

 

b 
a 

 
 

Fig. 1. Distance definition between axes of rotation and symmetry of a rotor 
a – sensors disposition; b – rotor section by a plane of sensors disposition 

 
 
 
It is considered that due to rotor imbalance its rotation occurs around the axis which passes 

through the center of masses, and the amplitude of radial oscillations A0 is equal to mass eccen-
tricity ε (i.e., A0 = ε). We will further demonstrate that such statement is fair only for angular 
rotor speed ω , which is significantly smaller than resonant value Ω (at condition ω<<Ω). 

In the sufficiently large values of angular speed ω displacement of the mass center of the ro-
tor concerning the symmetry axis, which is caused by its imbalance, leads to additional inertial 
displacement λ of the rotation axis concerning the mass center [7-10]. In this case the amplitude 
of radial fluctuations can be represented in the following form: 

λε +=0A .     (5) 

Magnitude of inertial displacement λ for harmonic oscillations can be determined as [7, 8, 
10]: 
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where µ is the damping coefficient of oscillations. 
We may find from (5) an allowance expression (6): 
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The analysis of expression (7) indicates that under condition of Ω > ω magnitude 
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It follows from (8), in the area of under-resonant frequencies amplitude A0 of radial oscilla-
tions exceeds mass eccentricity of a rotor. 

Under condition of Ω > ω magnitude 
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and, consequently 
( ) ελε <+=0A .     (9) 

It follows from (9), in the area of after-resonant frequencies amplitude A0 of radial oscilla-
tions becomes smaller mass eccentricity of a rotor. 

Let's define limiting values of inertial displacement λ and amplitudes A0 of radial oscillations. 
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It follows from (10) and (11), under condition 0→ω  and, accordingly, 0
0
→

→ω
λ , ampli-

tude A0 of radial oscillations approaches to magnitude of mass eccentricity ε  of a rotor: 

ε
ω

→
→00A .     (12) 

Magnitude ( ) 022 <−Ω ωsign  at infinitely large increase of angular speed ω (and, hence, 

under condition Ω < ω), and we may find from (6) and (7): 
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Dependence of inertial displacement λ (a) and amplitude A0 of radial oscillations (b) from 
angular speed ω and mass eccentricity ε is presented in Fig. 2. 

 

a b 

 
Fig. 2. Dependence of inertial displacement λ and amplitude A0 of radial oscillations 

from angular speed ω and mass eccentricity ε 



 
596. AMPLITUDE OF RADIAL OSCILLATIONS AND IMBALANCE PARAMETERS OF THE ROTATING ROTOR. 

V. M. SOKOL 

 

 
 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING.  DECEMBER 2010. VOLUME 12, ISSUE 4. ISSN 1392-8716 

596 

 
 

Fig. 3. Displacement of the rotation axis of a high-speed rotor at its acceleration. 0 – position of the sym-
metry axis; G0 – position of the rotation axis ω→0 

 
 
It follows from (13) and (14), under condition ∞→ω  and, accordingly, ελ

ω
−→

∞→
, am-

plitude A0 of radial oscillations has approximation to zero value. It testifies to approximation of 
rotation axis of a rotor to its symmetry axis (so-called effect of a self-centering of a high-speed 
rotor). 

The trajectory of point G0 of crossing of rotation axis of the high-speed rotor (ωst>1000 s-1) 
with a supporting plane 0xy (at that the point 0 is a point of crossing of the symmetry axis of a 
rotor with plane 0xy) is provided in Fig. 3 [11, 12]. Conditions t→0 and ω→0 occur at the start-
ing moment. According to (10) and (11), the distance 0G0 is distance between rotation axis and 
symmetry axis (amplitude of radial oscillations A0), is equal to mass eccentricity ε of a rotor. 
The increase of angular speed in limits Ω > ω > 0 entails increase of amplitude of radial oscilla-
tions: A0 > ε. After a resonance passage the amplitude of radial oscillations A0 are reduced and 
at exceeding by angular speed of a resonant threshold (the condition ω > Ω) it is become less of 
mass eccentricity ε. 

We may define mass eccentricity of a rotor by comparison of expressions (1) and (7): 
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where magnitudes R, α, and β are defined by expressions (2), (3) and (4). 
Momentary value of angular speed w of a rotor can be determined in the form: 
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where r1, r2, r3 are momentary values of radiuses-vectors of supervised points A, B, C on a rotor 
surface and V1, V2, V3 are linear speeds of these points which are measured directly by sensors 
D1, D2, D3 [6, 10]. 

The damping coefficient µ of oscillations may be defined in the form [13]: 
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where logarithmic decrement of oscillation attenuation 
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res
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A1res and A2res are the amplitudes of two consecutive oscillations which are divided by period Т 
and measured at a resonance passage (oscillations, which are approximate to the free radial os-
cillations of a rotor). 

Dependence of the damping coefficient µ on angular speed ω and logarithmic decrement δ 
attenuations of fluctuations is given in Fig. 4. 

 

 
 
Fig. 4. Variation of damping coefficient µ as a function of angular speed ω and logarithmic decrement of 
attenuation δ 

 
 
We find from expression (15) by taking into account (16) and (17): 
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The analysis of expression (19) indicates that mass eccentricity of a rotating rotor can be 
measured continuously, in process of its operation, at continuous measurement of linear speeds 
V1, V2, V3 of supervised points A, B, C on a rotor surface and identification of radiuses-vectors 
r1, r2, r3 of these points1) [6]. 

If the rotor oscillations are periodic nonharmonic oscillations, the value of inertial displace-
ment λ with consideration of Fourier series may be determined in the form [10]: 
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where k is the harmonic order of Fourier series.  
We may find from equation (5) with regard to expression (20): 

                                                 
1) The choice of magnitudes r3 and V3 in formula (19) is determined by a casual choice of geometrical 
construction (Fig. 1, b). Other identical geometrical constructions define a choice of magnitudes r1 and V1, 
or magnitudes r2 and V2.  
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In the case of periodic nonharmonic oscillations mass eccentricity ε of a rotor may be de-
termined from comparison of expressions (1) and (21): 
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Where i is the number of one of three radiuses-vectors of points A, B, C on a rotor surface 
and Vi is linear speed of corresponding point. 

 
It follows from the presented study that continuous measurement (identification) of mass 

eccentricity is provided with system of integrated measurement of mechanical parameters of a 
rotor [1-3] and does not require application of the special measuring elements and devices. 
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