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Abstract: Lateral vibration of underwater suspended pipelie investigated for the case of
pipeline oscillation due to vortex shedding. Firstension force was defined at the connection
legs on sea bottom. To define the dynamical equdtie analogy of the Mathieu equation was
applied, meanwhile Ince-Strutt diagram was usedtfosolution. As a numerical example we
used the behavior of pipeline in a project betwd@emkey and North Cyprus in the East
Mediterranean Sea. Good agreement was found betwken theoretical results and
experimental data of Danish Hydraulic Institute (lRH
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Symbols

Lo —Length of leg, m;

L —Lengthening of leg, m;

AL — difference of lengthening, m ;

Ax —maximum horizontal displacement of
pipeline, m;

Fo — unite tension force in the leg, kN;

F — Tension force in lengthening leg, kN;
¢ —Angle of displacement, grad;

A, —cross-section of leg, M

F, — horizontal projection df — tension
force, kN;

P —external wave force, kN;

1 —safety coefficient;

Uaam— Permissible horizontal displacement;
F.qm— permissible tension force in the leg;
w — Cyclic frequency of structure, rad/s;

6 — Frequency of the external force, rad/s;
T —Period of structure, s;

To — period of the external force

g —Gravitation acceleration, ni/s

¢ — Length of the pipeline section, m;
E —Modulus of elasticity, kN/m#)

Introduction:

1 —Poisson ratio;

0 — Thickness of pipeline, m;

R — External radius of pipeline, m;

D —External diameter, m;

p —density of HDPE material, kg/n
po—density of water, kg/fh

M —mass of structure plus added water
mass on the one meter, N/m;

I —moment of inertia of pipeline, n

El —stiffness of pipeline structure, kN.mm
F — Karman force;

C, — non-dimensional Karman coefficient
(for cylinders G=1);

S— area of the cross-section of pipeline;
wy — circular frequency of Karman vortex;
T, — vortex shedding period;

I" — vortex of strength magnitude;

U,, —incident velocity at the upstream end
of the flow field;

A — amplitude of pipeline displacement
N — kinematical viscosity;

Re- Reynolds number.

In this research, we defined oscillation of susgehdubsea pipelines [1] by analogy
with suspended bridges and offshore tension le¢fopias [2,4,5,9]. In this research the
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mathematical application of Mathieu equation withriumerical solution method are given [3].
The subsea vibration of long cylindrical body haanm solutions in the technical literature
[2,5,8]. But the dynamic equations for these stmegt have non-linear characteristics.
Therefore, to solve the equations researchers mpply various numerical methods for
investigating pipeline stability. The main problésmto solve the stability of a system that
vibrates during vortex shedding [6,7]. The appraiarifinite element code is given for
comparing the accuracy of the obtained solutiorhlite analytical one by different authors
[15-17]. As an example we used a pipeline thatreldebetween Turkey and North Cyprus [1]

(Fig. 1).
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Fig. 1. Cyprus Peace water

Statement of the Problem
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Fig. 2. The design scheme of the pipeline:

a) in longitudinal direction, b) cross-section @b showing the vortex shedding (where- differential
index by displacement/, — mean velocity gradient from upstream to downstrélirection at the outside
of the pipelineL, — length of the vertical connection length)
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The dynamic equation of pipeline with damping segi as [2,4,7]:

MU + Clugu — Fu, =0 (1)

where:M — mass of pipeline structure together with addatewmassE — tension force in leg;
u — horizontal displacemerit;andx — differential index by time and displaceme@t:-strength

constant,C = 0.5C, p,,D; Cp — hydrodynamic strength coefficient; — water densityD —

diameter of leg.

Fig. 2 a, b defines the loads that affect the dyinastability of the pipeline during
vortex shedding.
If the damping effect is neglected, we can sulistitiie Eq. (1):

Mu, — Fu,, =0 (2)

and assume that
F = Fy— F cosawt (3)

Displacement of the pipeline can be written as y(t)sin(%) , wherey(t) — amplitude of

harmonic displacement dependent on time; number of modeg; —length of pipe
Then, if we substitute Eq. (2) into the Eq. (3) may write

Uy —%(1—%cos€t)uxx =0 4)
0

Different modes are illustrated in Fig. 3.

The result is:
mz V| F F
4| — | |[2{1-—Lcostk ||y=0 5
ytt(f]{M[ = ﬂy %)

If we put in Eq. (5) instead of th# value, we find another parametef%t giving cos# as

cos2r , whered — frequency of the external force,

2 2 =
Vi + (4m2 %— 4 %Fcosery =0 (6)
0

where , _ [%j % is circular frequency of lateral vibration of thgeline system.

Equation (6) is known as Mathieu equation. Inczacal form we can write it as
follows [3, 6 ]:

y, +(a—2qcos2r)y =0 @)
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Fig. 3. Different modes of the dynamical stability of thpgline

wherea andq are constants. From Eq. (6) we can write [3,6]

2

@ 2
a=4m’—; qeom 2 F _aF
6

— = 8
0*Fy 2F ®)
If the force changes with harmonic lav= P, + R®(t), whereP — external wave forcd, —

unit wave forcepP; — wave force that is independent of time;
@ — function of time;T — period of wave motiom(t +T)=®d(t). Then this equation can be

given: the Hill Equation [13, 14]:
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Yo + @’ [1- 2q0(t)ly = 0 9)

The Mathieu equation has an oscillating nature,geqkends on constardsandq: two solutions

have stable and instable character (Fig. 4).
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Fig. 4. Two solution of Mathieu equation: a) instablestgble [4]

The domains of stability for the solution of the thi@u equation are given in the Ince-

Strutt diagram (Fig. 5). The solution of the Mathi&guation to contact with the subsea pipeline
instability is given below in the Egs. (21-27), ehiis solved by diagram (Fig. 5) and by

theoretical background .

Fig. 5. Ince-Strutt diagram [6]

Every curve of the graph is given by the Mathienction. At first among four instable
fields we can write exact equations, if we marknmhasa, anda, (in thisr index is right, and

thel index is left hand side) as [13, 14]:
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In the shaded area the stable domains are gimethel shaded areas of the Ince-Strutt
diagram we have parametric vibration case for dfi€ position of the pipeline. From Eq. (8)
we observe that frequency of the systia larger as ik andq are smaller. So, the relationship
of these parameters has constant values by tledftaystems as| = ka may be defined from

points on the diagram as a line (Fig. 5).

Vortex shedding

In the starting process of separated flow arousdalar cylinder a symmetric wake
domain develops, but due to instabilities, asymynefitl soon occur. The consequence is that
vortices are alternatively shed from each sidehefdylinder depending on the cross-section of
the pipeline [11]. Under shock wave forces andaa®nsequence, Karman vortex shedding
from the pipeline has a horizontal displacemen like4x. Then the legs of structure have
tension effect on thdl value (Fig. 2). The frequency effect of vortex dttiag is defined by

\ _ _ _ o
the formula @ = 0226 , whereV — velocity of wind waveD — diameter of pipeline. The

coefficient 0.22 is the Strouhal number for a dacisection of the pipeline [4,11]. The force
affecting the Karman vortex for rigid cylinders is

Fe = Ck(% povzsjsina)kt = Ry Sinat (11)

whereF, — Karman forceC,— non-dimensional Karman coefficient (for cylind€ig:1); S—
area of the cross-section of pipe ling;— density of waterp, — circular frequency of the
Karman vortex. Considering a long circular cylindtie frequency of vortex shedding is given
by the empirical formula [11]:

ﬂ = 0.195(1—£] (12)
V Re

whered is vortex shedding frequency, Re is Reynolds numRer:V—d. This formula can be
14

written generally between the range 250<Re<2xdMich is in the transition region. Each
vortex eddy is mathematically represented as al legdex shedding of strength magnitude
(Fig. 6).
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%

A

Fig. 6. Example of vortex shedding around the pipeline

Eddies in one row are either placed exactly orofiygosite side from those of the other
row or they are symmetrically staggered (Fig. 79, 8 the pipeline has long horizontal
dimensions, the vortex shedding are arranged iragigpatterns. The mathematical description
of these lines is given in the complex form as [4],

Fig. 7. Arrangement of vortices in a Von Karman vortexstr

A stability investigation leads to the result thtae first observation is given as
instability of the system because of the vortexdslmy around the boundary layer of the
pipeline. The second observation has generally uhstable character, but becomes stable
character for a definite ratio between the vorteeet widthh and distancd between two
adjacent vortices in the same row:

l—h:icosh’lﬁ =028 (13)
T

From Fig. 7 we determine

r
=]
TV(UM I ,—8] (14)

whereT, — vortex shedding period; — vortex of strength magnitud¥;, — incident velocity at
the upstream end of the flow field. For simpliclgt us puth=D, whereD — the cylinder
diameter and let us approximate the vortex velegitoU,, . Then we may write [11]:
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D
028
Thus, if the length between vortex-shedding much larger thah2R (R — radius of pipe), then

the flow field will be unstable. Experimental vatuef the mean relative spacifgl vary
between 0.19 and 0.3.

TU, = (15)

Problem solution

There are many solutions to the Mathieu equatthitaker, Watson (1963} a=Db,
g=-8c; Stratton (1942)—a=b-c%2, 4q=¢ Yanke-Emde-Leush (1964} a=4b, q=8c;
National Bureau of Standard (1958a=b-c/2, q=c/4[3,6,7,10,13,14].

From Fig. 2, if we have fixed suppantano displacement of this point then the system
is unstable. If the foundation has small motiomtttgs system may be stabile. If we change the
sign of the Eq. (6) then accordingly to Eq. (8) caa write:

2
[0
a= —4m2? (16)
From the diagram (Fig. 8) we can see thgtarameter depends on vibration amplitude. Then
amplitudeA has a small mass (pipeline) which will be unstathat isa=m? or a=1,4,9, ...

which is given asyp; = 1\/|§; W, = \/Ig; Wy = é\/lg;...for every number of modes.

The unstable field defined by=1 has a main field and much avoidable field because
of the biggest displacement and has a practicalevbécause the biggest oscillation mode. For
definition instability of oscillation of system cdre used for analogy for dependence of tension
leg [2,5].

If we analyze Eq. (1) after different transformatiwe can define the amplitude of oscillation

as:
1
2 42 2 212
o IMo R Joo 1 (17)
32C 94F02 62 4
2
For %:%;or(%:%) whereT, — period of pipeline structurd; — period of wave
motion, relation of the maximum amplitude of dig@enent by lateral oscillation is:
2
% — 97°MF (18)
128CF,

Its formula enables us to define maximum amplitudepipeline oscillation from tension
dependence during vibration~to initial tension force Fy .

During small amplitude, wheni)<|q| <1, the stability of pipeline may exist if it fulfgl the
q2
condition|a] < — (EQ.(8)).
El > (Ea-(8)
In the non-linear systems the resonance appearstfre following condition

0~Lo (19)
q
wherep andq — whole prime numbers.
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1) If p=q=1, 6~ w this case is a basic case or ordinary resonance.
2) If g=1, 8~ pw or w =£ - Parametric resonance. This resonance type magivba
p

in the linear systems with periodic coefficients).t
3) If p=1,w=qv - Resonance on the overtones for external frequenc

Eqg. (7) is the basic de-multiplication resonanceerep=1, g=2. Then we havewzg.

In the first approximation we write

y= bco{gt + l//j (20)
whereb andd is defined from system of equations:
2
db =— bge sin2y
gt 99 . (21)
v qo
—— =@w—-———CO0
dt 2 0 2y

If we introduce new change paramete@ndyv, then
u=bcosy ; v = bsiny (22)
The differential form of Eq.(19) we take into cahesiation the Eq.(20), we have

du db dy, qo? 0| .
— =—C09y ——=bsiny =| ————| o—— | |bsin
dt dt ¥ g o { 0 (“’ 2)} v

) (23)
dv db . dy qo 0
v_@ Wohcosy =[- 32 1 w-Z |
G- g SV + g beo { 0 +(a) Zﬂ cosy
or
2
E:{_qi_(w_g)}bsinw
dt o 2
(24)

dv qw? 0
— == —— | |bco
dt { 0 {w zﬂ ¥

The solution of Eq. (23) with substitution of Eq9] the equation system is dependent on the
roots of the characteristic equation

2

A qi+(w—gj
qo° 0 “ *=o (29)
1,2 A
26 (a) 2)

or
2 4 2
)

289 o2 -0 26

Lo i(o-9) (26)
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Then the mean square of the equation gives:

~ q2w4_ _EZ
p=y2e (a) 2] (@7)

Thus, if the frequency of external force in thddualing interval is
250(1—3] <6< 2w[1+ ﬂj (28)
4 4

then this system may give rise to parametric resomaand the amplitude of vibration will
increase exponentially. This equality has an unestiéld. Now we define the amplitudeand
vibration rotationy.

b? =u?+Vv?

\Y (29)
0 = arctan—

u

According to Egs. (22) and (24) we can see thatiaginaryl the amplitudeb will be limited
by a time function. If, the amplitudé will to increase by an exponential law. If in tisigstem
y=0 the state is unstable and the system can selfaisci

Selected (used) data

As a representative example for solution of theeafeentioned problem we used the
pipeline between Turkey and North Cyprus locateth@atarrowest part of the strait formed by
Turkey and North Cyprus. The pipeline will providater at a rate of 75 million m3 per year
(2.38 m3/s). The pipeline will be a submerged flugtstructure and the subsea section of the
pipeline will consist of 1.6 m diameter HDPE (HiBlensity Polyethylene) pipe approximately
78 km long. In the shore approach sections of thger the pipeline will be either resting on the
seabed or be trenched and backfilled below seahad IBetween the 250 m depth contours on
both the Turkish and Cyprus sides, the pipeling b8l suspended at a water depth of at least
250 m. The pipeline will span from vertical legschared to the sea bed in spans of
approximately 400 — 500 meters length.

Numerical Results

We performed a numerical simulation using the feilgy real data taken from the
project [1]. The length of pipe for one sectit¥b00 m; radius R=0.8 5m (D=1.7 m)The
thickness of pipe=0.063 m The Poisson ratio ig=0.44. The density of HDPE material of
pipe p=1.4x1C kg/nt. The density of sea wateg=1.03x10 kg/nT. The elasticity modulus of
materialE=120000 t/M. The stiffness of pip&l=7500 kNmn¥. The initial tension of legs was
asFy=600; 800; 1000 kNThe mass of pipe on the unitN&=600 N/m.If the point &; q) in the
shaded domain of the stability graph is found ttie® Mathieu equation has the following
relation (Fig. 5):

y=Ad?py(x)+Be"™py(x) 0f3
whereA andB are integration constan{g;(x) andp,(x) are periodic functions witlz period;o
— real value of outside modes of boundary layeicwis equally half of real value of the inside
mode.

The main results of this calculation are providedable 1. The relationship between
amplitude of displacement and frequency are preseintFig. 8 and Fig. 9.
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Table 1. The main results of calculation of Mathieu equatioefficients

Fo kN wlf m a q State
600 0.5 1 1 0.5 Unstable
2 4 2 unstable
3 9 3 unstable
800 0.57 1 1.3 0.65 unstable
2 5.2 2.6 unstable
3 11.7 5.85 unstable
1000 0.65 1 1.7 0.85 unstable
2 6.76 3.38 unstable
3 15.2 7.6 unstable
. A
a,m
0.221 | -
0.2 |
I
0.178 —
0.0396 |
0 8
wlf
0.1 0z 03 04 05 0§ u.'? @
Fig. 9. The diagram of parametric resonance of pipeline-_ calculated,= —  with
dampinﬁ = 001, dark grey [19] ;-._._. Papaidoussis & Issid, 1974 [18},..... €lENngineering
0]
Group-Danish Technology Institute, 2007 [1].
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Discussion

During mathematical formulation of instability plen at undersea we investigated
the stability problem of undersea pipeline and @mpgibn of the Mathieu equation allowed
determination of theoretical formulation of pipetability because of vortex shedding. To solve
the problem, first of all the vortex shedding effen the pipe was provided. The Mathieu
equation was solved theoretically by using the @pawith suspended bridges [4, 9], TLP-type
platforms [2, 5] as well as floating offshore ptaths [11] and applying the most common
numerical methods [6,7,13,15,16,17]. The theorkficdings show good agreements with the
actual measurement results.

Conclusion

e By analogy with suspended bridges it may be stHtatithe suspended undersea
pipelines will experience vibration with frequenegual to half of the frequency
of the wind wave load,;

e During horizontal vortex shedding the pipeline lessdynamical stability and
exhibits unstable character. Therefore it is neagsdo calculate dynamical
stability for such structures;

e This problem is a non-stationary and therefore dtability problem may be an
example which cannot be analyzed by statics methods

o Different modes of the dynamical stability of thépgline are presented as
symmetrical vibration mode®=1, 3, 5, ... which indicate parametric resonance
case from Egs. (16)-(17). That can be observedlopip=1, 3, 5, ...

e Application of Ince-Strutt diagram enables defmiti of coefficientsa and q
without solution of the Mathieu equation and cardbéned by Mathieu functions
with analytical methods;

e Numerical solutions indicate that all of the caséth different forces and modes
are in an unstable state;

e In order to avoid these unstable cases appropegemeering measures must be
considered.
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