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Abstract. Structural modification needs to prescribe sonmmactiral frequencies and mode
shapes. This study derives the eigenfuction anduéecy response function matrix of
constrained dynamic system based on measuredatastithe modified eigenfunction is derived
by utilizing the measured modal data of the acsyatem as constraints to govern a part of the
behavior of modified system and minimizing costdiions of the difference between analytical
and corrected parameter matrices with them. Ithews that the modified eigenfunction
incorporates the modified parameter matrices. Téguency response function matrix modified
by measured constraints is also derived by minimgizA cost function of the dynamic strain
energy to be expressed by dynamic stiffness matitk the difference between analytical and
measured modal displacements. The validity of thep@sed methods is demonstrated in
applications.

Keywords: dynamic strain energy, constraint, eigenfunctileguency response function,
modal parameter

1. Introduction

Modal data are extremely useful information that aasist in the design of almost any structure.
The visualization of mode shapes is invaluablehendesign process and the development of a
modal model is useful for simulation and desigrlisi.

Structural modification is a procedure aimed atnitfging the changes required in a
structural system to modify its dynamic behavionat(ral frequencies, structural modes,
frequency response) in the desired direction. E&ep in structural design process requires the
analysis of a modified structure that is often oslightly different from a structure previously
analyzed. This complete reanalysis of the strectoay be an expensive and time-consuming
task, and make the detailed refinement of the pegatructure difficult.

Enhancement of the structural response is oneecddmmon goals of structural modification
processes. Vibration is becoming increasingly irtgndr in the design of mechanical and
structural systems. The change of the structurahtier to alleviate vibration problems gives
rise to the structural modification problem. Theolgem of determining the structural
modification needed to prescribe some natural #eqies and mode shapes is considered.
The structural dynamic modification techniquesragieto reduce dynamic design time and can
be implemented beginning with spatial models ofittires, dynamic test data or updated
models. The mathematical models are extracted épmamic test data viz. frequency response
function (FRF).

The structural modification is usually the direcpiplem and the inverse problem. The direct
problem consists in determining the effect of alseastablished modifications. This is a
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verification problem aimed at establishing the cdfincy of given changes on the dynamic
behaviour of the considered system. The solutiothefinverse problem can not be unique.
The inverse problem tries to identify the most appiate changes required to obtain the desired
dynamic behaviour. System identification and damalg¢ection methods belong to this

category.

Baldwin and Hutton [1] provided a detailed review giructural dynamic modification
techniques. Sesteri [2] considered the direct pmbbf determining the new response of a
system after some modifications are introduced thto system based on the modal database
and the FRF database. Kundra [3] discussed thetstall modification methods for getting
desired dynamic characteristics by using modifiemely mass, beams and tuned absorbers.
Ram [4] discussed two methods for determining tamped natural frequencies of a viscously
damped system, which is changed by structural neadibn based on transfer function, and
eigenvalues and mode shapes. Braun and Ram [ajsdied the effect of modal truncation on
structural and modal modification, and the impa$isjbof obtaining an exact solution for
structural modification when using an incompletecfesigenvectors.

Minimizing a residual matrix norm based on the Ragh-Ritz approximation, Ram et. al [6]
proposed an analytical method for the approximatbma modified structure eigensystem to
have only an incomplete set of modes and frequerafi¢he original model, and the amount of
modification in the mass and stiffness matrices.

This study presents the analytical methods to deter eigenfunction and FRF matrix of
modified dynamic systems without carrying out coatelreanalysis based on the measured test
data as constraints. The modal parameters and FRffxrare derived by minimizing the cost
functions mentioned by the past researchers. ghsvn that the modified eigenfunction is
expressed by the modified parameter matrices ssichass or stiffness matrix. The validity of
the proposed methods is illustrated in applications

2. Modal Parametersof Locally Modified System

Measured and analytical data are unlikely to beakdue to measurement noise and model
inadequacies, and damages. If updated model gxeptoduces inaccurate measurements
any subsequent analysis may be flawed. Assumingekgerimental data are accurate, this
involves comparing the experimental data and theleh@redictions. Boundary conditions,
geometry, material properties, and local damagesher parameters that can have a large effect
on the responses predicted by finite element modlbkese parameters are subjected to
uncertainties, which lead to errors in the model.

Modal parameters should be evaluated due to l@ezhlirass and stiffness changes, and be
corrected to obtain exact dynamic characteristiesiadled by measurement noise, model
inadequacies, and local damages. The dynamic bmivaef a structure which is assumed to be
linear and approximately discretized fodegrees of freedom can be described by the egsatio
of motion

M ,li+Cu+K u=F(t) 1)

where M, and K, denote the nxn analytical mass and stiffness matrices,

u=[u u, u,]', and CeR™is the damping matrix. AndF(t) is the nx1 load
excitation vector. Without loss of generality, Reigh damping is adopted as

C=aM,+ /K, %)
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where ¢ and g are the two proportionality constants which carrddated to the damping

ratios of the first and second natural modes. Agsgrie system is lightly damped and the free
vibration, the dynamic equation of Eqn. (1) becomes

M,i+K u=0 ©)

Assume the displacement in exponential form as

u=Ue" 4)
where U denotes the modal coordinate vectar, is the natural frequency, anq’i:\/—_l.
Substitution of Egn. (4) into Egn. (3) witk' =0 yields the equation

(K,-o™M,)0=0, i=1 2 -, n (5)

The desired modal data are required to be modifiefllfill the eigenvalue equation using
modal test data. In order to establish the ratabietween the analytical and corrected mass
matrices under the assumption that the mass is fietction of timet, this study utilized the
cost function of Berman and Nagy [7] by

I=2IM M =M w2 ©)

whereM is an nxn corrected mass matrix. Assuming that the modah détthe dynamic
system are measured at several degrees of freettemmeasured modal data become
constraints to describe a part of full modal ddtthe system

AU=0 @)

whereA is an mxn (m<n) matrix and U denotes annx1 actual modal coordinate vector.

The corrected eigenfunction is obtained by miningzthe cost function of Eqn. (6) subjected
to the constraints of Eqgn. (7).
In order to insert Eqn. (7) into Eqgn. (6), the doaisit equations of Egn. (7) are modified as

SM2U =0 ®)
where S=AM."?. Solving Eqn. (8) with respect td }'?U , it is derived as
MY?U =[I -S| ©)

whered is an arbitrary vector and ‘+’ denotes the MooesH®se inverse.
The analytical mass matriM _, the natural frequencyp, , and the corresponding mode

shape vectorU in Eqgn. (5) for updated dynamic system are repldne the corrected mass
matrix M , natural frequencyw, , and mode shape vectdd due to the measurement and
modeling errors, and local damages, respectively.

K,-o™Mu=0 (10)

Equation (10) can be modified as
699

© VIBROMECHANIKA. JOURNAL OF VIBROENGINEERING DECEMBER2009.VOLUME 11,1sSUE4. ISSN1392-8716



515.DETERMINATION OF EIGENFUNCTION AND FREQUENCY RESPORSFUNCTION OF CONSTRAINED DYNAMIC SYSTEM
HEE-CHANG EUN

MY2U = "M 7K U (11)

Applying the condition to minimize the cost functiof Eqn. (6), we obtain from Eqgns. (9) and
(11) that

| -ssh=0'"M K U (12)
Solving Egn. (12) with respect to the arbitraryteed, it follows that
d=[I-S'Sj "M **K ,U+S'Sv (13)

wherev denotes an arbitrary vector. Substituting Eqi3) (bto Eqn. (9) and arranging the
result, the constrained eigenfunction can be writte

K -o?M, Ju=0 (14)

where K™ = [I —Mi’z(AM;“yAMjJKa. Equation (14) represents the eigenfunction to be

constrained by the measured modal displacementstaluencertainties or local damages.
From Eqgn. (14), it is observed that the deviatibthe dynamic responses of the intact system
due to the uncertainties or the local damages @intorporated in the corrected stiffness
matrix.

By the similar approach, the eigenfunction modifigdconstraints of measured test data can
be obtained by replacing the cost function of EGhby a different cost function [8] of

(15)

a

1, - .
J :EHK auz(K —Ka)K 12

whereK denotes the corrected stiffness matrix. Assuntivag the motion of the system of
Eqn. (3) is constrained by Eqgn. (7), the constragutation of Eqn. (7) is modified as

RK2U =0 (16)
where R =AK_”?. Solving Eqn. (16) with respect t&*'*U , it follows that
KU =[I-R'R}v 17)

wherev is an arbitrary vector.
Utilizing the corrected stiffness matrik, natural frequency»’ and mode shape vectdy

due to the measurement and modeling errors, arad dtzenages into the eigenfunction of Eqn.
(5), it is written as

(K -om =0 (18)
Expressing Eqgn. (18) with respect €°U , it is written by
K*2U = @ K %M U (19)

Utilizing Eqgns. (17) and (19), and giving the cdiadi to minimize the cost function of Eqn.
(15) into the result, we obtain the relation

-R RN =0"K*M,U (20)
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Solving Eqgn.(20) with respect to the arbitrary wedt, it follows
v=[-R'RJo°’K M ,U+R"Rx (21)

wherex is an arbitrary vector. Substituting Eqn. (21tpiqgn. (17) and arranging the result,
the corrected eigenfunction is written as

(K,-o*™M =0 (22)

where M’ :ll —KZZ(AK:’Z)*AKglN .- The modal parameters of the updated system are

obtained by solving the eigenfunction of Eqn. (22)t is shown that the effects of the
uncertainties or damages of dynamic system candmeporated in the corrected mass matrix.

The natural frequencies and their correspondindenshapes of modified dynamic system are
obtained by solving the eigenfunction of Eqn. (bfiforrected stiffness matrix or Eqn. (22) of
corrected mass matrix with the constraints of tleasured modal data.

3. Frequency response function

It is important to establish the relationships bew FRF and modal parameters for

successful modal testing. Inserting= Ue™ and F=Fe™ into Eqgn. (1) and expressing it
as the form of frequency domain, it follows that

(K —QM + joC)U(Q) = F(Q) (23)

where Q denotes the excitation frequency arnd=+-1. Using the FRF matrix, the

response of the original structure, described ﬂb&)) to an external excitation, described by
F(Q), is given by

U(Q)=H,(QF() (24)

where H,(Q)=(K -Q*M_ +jQC,)" is the FRF matrix of the original structure, whose
elements can be receptances. Using the impedgpee-tatrix of the structure
B,(Q)=H;(Q), the equation of motion for the initial structurethe frequency domain is
expressed by

F(Q)=B,(Q)U(Q) (25)

If the system is undamped or only lightly dampéa, ¢haracteristic features of the system such
as Eqn. (1) are the natural frequencies and the corresponding normal modes, which can

be calculated from the eigenvalue problem

(K,-oM )p, =0 (26)
Substituting u = @q into Eqn. (1), premultiplying the result by’ and normalizing the
mode shapes to unit modal mass(i=1 2, --- n), it follows:
g+Irq+Aq=F (27)

where (|);r|\/|(|)| =1, (pITM(l)k =0(i=k), F=(|)TF(t)
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206, 0 - O o 0 - 0
0 2 C0 0 @ -~ 0

T I
0 0 - 207 0 0 - @&

and F is modal excitation,¢ and q are the modal matrix and mode coordinate vectat, a

the superscript ‘T’ indicates the transpose of matr
Transforming Eqn. (27) into the frequency domaatdketo

(Q*+2j£00+ 07 R(Q)=F(Q) (29)

Modal transformation using the real eigenvalues @igdnvectors leads to the representation of
the FRF matrix for an excitation frequency :

T
HO(Q):E 2 (gi(pi .

(30)

with U(Q)=H,(Q)F(Q) and B,(Q)=H, ().

The structural dynamic features can be changedhéyhexpected environmental change or
damages of the system and should be found basetheomeasurement data. Under the
consideration of the excitation frequency, let gsume that the modal coordinates in the
frequency domain are measured as

AUQ) =0 (31)

which A denotes a Boolean matrix to define measurememtgpaind Eqn. (31) represents
constraints to locally govern the dynamic responsé@$e dynamic equation in the frequency
domain of Eqgn. (29) should be modified due to thistence of the measured test data of Eqgn.
(31).

Let us consider the variation of the dynamic stexiergy in the frequency domain expressed
as the dynamic stiffness matriB, (Q2) and the displacement difference between consttaine

and unconstrained dynamic systems.

S=%(U—U)TBO(U—U) (32)

where U(Q)=H,(Q)F(Q). Letus modify the constraint equation as
AB,"*B,"*U(Q) =0 (33)

Because the matri is a rectangular matrix, the Moore-Penrose invenssst be utilized.
Utilizing Z =AB,™* into Egn. (33) and solving the equation with respe B,'*U, it
follows
B, 2U=[-(z) z) (34)
wherey is an arbitrary vector.
Minimizing the variation in the dynamic strain eggrof the dynamic system of Eqgn. (32)
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with Eqn. (34) is to satisfy the following equation
I -(z)yz}y=-8,"0 (35)
Utilizing the properties of the Moore-Penrose irpeer of [I —Z*Z]+ =1-2Z2"Z and
Z°ZZ* =Z", the solution with respect to the arbitrary vegtaf Eqn. (35) is obtained as
y=[-z2zB,"?0+zzw (36)

wherew is another arbitrary vector. Substituting Eqn.)(Bo Eqn. (34) and pre-multiplying
both sides of the result bﬁso’”z leads to the constrained displacement.

U=(-B,"z°z8, )0 =) -B,"*(aB, ") AB,F (37)
The final form of the FRF matrix of the constrairdyghamic system can be written as
H cons = |_I - Boil/z(A Boillz)JrAhOil (38)
0 -Q*+2jEw Q)

where B,(Q)=H,*(Q)=> -
i=1 P,
modal displacements of constrained dynamic systefullaegrees of freedom.

Equation (38) represents the FRF matrix of theesgssubjected to constraints of measured
modal displacements of Eqn. (31) and gives thetiogiship between modal parameters of
dynamic system modified by measurement errorsaal ldamages.

Using Eg. (38) into Eq. (37), it leads to the

4. Applications

As an application, let us consider a six DOF masgig system in Fig. 1. Describing the
displacements byu=[u, u, u, u, u, u,]', the dynamic equations of motion for the
system can be written by

Mii+Ku = F(t) (39)

where M =diaglm m, m, m, m m] and

[k, +k, +k, -k, 0 0 -k, 0
K, ktkotk -k 0 K, 0
| o Tk, Kotk otk kK, 0 K, o)
0 0 Tk, K +k 0 0
Kk, K, 0 0 Kk tk+k -k
o 0 K, 0 K,k +k |

Each of masses weightOkg , and the springs have stiffness t§OMN/m except for spring

k, whose stiffness is30avIN/m . The modal properties of the mass-spring systegqot (39)
are listed in Table 1.
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Fig. 1. A structural dynamic system

Table 1. Modal parameters of the unconstrained mass-sgyisigm

Model | Mode2 | Mode3 | Mode4 | Mode5 | Mode 6
30.046 | 63.913 | 75.209 | 91.235 | 111.531| 119.112
0.1920 | 0.1638 | 0.1381 | 0.1110 | -0.1194 | 0.9597
0.4384 | 0.1724 | 0.6038 | -0.2766 | -0.2006 | -0.1867
0.4541 | -0.4440| 0.0380 | -0.2907 | 0.7812 | 0.1304
0.2642 | -0.7672| 0.1803 | 0.5892 | -0.3475| -0.0479
0.4603 | 0.3826 | -0.1937| 0.5176 | 0.1791 | -0.1575
0.5320 | -0.1062 | -0.7381 | -0.4599 | -0.4271| 0.0100

Natural frequency(Hz
Mode shapes

Table 2. Modal parameters of the constrained mass-sprisgsy

Model | Mode2 | Mode3 | Mode4 | Mode5 | Mode 6
Natural frequency(Hz) 31.52 66.78 84.97 100.7 119.1 -
Mode shapes 0.1834 | 0.2598 | 0.244 | 0.0171 | 0.9158
0.435 | 0.4144 | 0.2254 | 0.7146 | -0.2784
0.541 | -0.1735| -0.5096 | -0.0372| 0.0778
0.3365 | -0.7258 | 0.5995 | 0.0186 | -0.022
0.4101 | 0.4275 | 0.2998 | -0.6974 | -0.2702
0.4507 | -0.1452 | -0.4251 | -0.0314| 0.065

Let us assume the relationship of the measured sloalges at nodes 3 and 6 as
U,=12U, (41)

Substituting Eqns. (39) and (41) into Egns. (14)(2®), and solving the eigenfunction, the
modal parameters are calculated as Table 2. Adfndloe eigenfunctions of Egns. (14) or (22)
are derived based on the corrected mass and a@dlgtiffness matrices, and the analytical
mass and corrected stiffness matrices, respectitédyshown that the numerical results are the
same and the mode shapes at nodes three and isfy sa¢ measured relation of Eqn. (41).
Though the system is six degree-of-freedom systbenconstrained dynamic system becomes
five degree-of-freedom system due to a constraind eneasured mode shape relation and
exhibits five mode shapes. From the applicatibis bbserved that the modal parameters of
modified dynamic system can exactly explain theeefgnction without any complete
reanalysis process.
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As another application, let us consider a vibratgygtem with the forcing frequency
2rad./sec. and the damping ratio 2% on all modes as shownign E Expressing the
dynamic equations of the system in terms of modahimeters, the FRF matrix of the initial
dynamic system is obtained as

0.072-0.006] -0.042-0.008] -0.122-0.005] - 0.055-0.001]

| -0042-0008] -0092-0019] -0.268-0014j - 0.122-0.005]

° 7| -0122-0005] -0268-0014j -02-002] -0.091-0.008]
~0055-0001j -0.122-0005 -0091-0.008  005-0.006j

If the dynamic mode shapes of the system is cdnstieby the mode relation of), =U,

- e e e

Fig. 2. A damped dynamic system

the FRF matrix of the constrained systems basedgqon (38) is derived as

0.082-0005] - 002-0.006] —0.106-0.002j - 0.035-0.0005]
~0.009-0.006] -0019-0013j -0.214-0007] -0.051-0.003]
@~ _0061-0002j —0134-0005] -01-0009j  0.038- 0.006]
~0061-0002j -0134-0005 -01-0.009j  0.038- 0.006]

Comparing the mode shapes at nodes three andtf@ishown that the FRF matrix satisfies
the constraint. From the applications, it is fouhdt the proposed method can easily and
explicitly determine the FRF with the physical infaation of the original structure and the
constraints of modal coordinates only without amymerical scheme and other mechanical
properties.

5. Conclusions

This study presented the reanalysis method to leacthe modal parameters and FRF
matrix of modified dynamic system subjected to ¢a@ists such as measured modal data.
The reanalysis methods to determine the modal pteasnand FRF matrix were derived by
minimizing the cost functions in the satisfactiointlee constraints. It was observed that the
modal parameters of modified structure were deteethibased on the measured natural
frequency and modal data. It was shown that topgsed methods have an advantage to be
able to determine the modal parameters and FRF aafified system without any complete
reanalysis process. The validity of the methods ikastrated in applications.
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