
 

 
 VIBROMECHANIKA. JOURNAL OF VIBROENGINEERING.  2008  DECEMBER, VOLUME 10, ISSUE 4, ISSN 1392-8716 

 

557

416. Rotations of a dumbbell equipped with ‘the leier constraint’ 
 
A. V. Rodnikov 
Bauman Moscow State Technical University, Russia 
e-mail: avrodnikov@yandex.ru 
 

(Received: 23 September; accepted: 02 December) 

 
 
 
 
Abstract. We consider a special space tethered system consisting of a dumbbell-shaped rigid body and a particle. The 
particle coast along on the cable. The cable ends are placed in the dumbbell endpoints. We call such system ‘the system 
with leier constraint (the Dutch term ‘leier’ means the rope with both fixed ends). We assume that the system mass center 
moves along the circular orbit in the Newtonian Central Force Field. We study the dumbbell's relative motion caused by 
the particle of small mass in the orbital frame of reference. We deduce a sufficient condition for librations of the dumbbell 
about its stable equilibrium. We find a family of the dumbbell's asymptotic motions tending to librations about unstable 
equilibrium. The surface of such asymptotic motions is an interstream separating the areas of the dumbbell's right-hand 
and left-hand rotations. We deduce an equation of this surface. 
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Introduction 
 
Space tethered systems are one of the most interesting 

topics in dynamics. For the first time the motion of a 
particle tethered to a spacecraft has been suggested in [1, 
2]. Presently there are hundreds papers devoted to various 
aspects of the motion of tethered satellites. In this paper we 
study some generalization of the classic couple.  

We consider the system that moves in the Newtonian 
Central Force Field and consists of a dumbbell-shaped 
rigid body and a particle. The particle coasts along on the 
cable with ends placed in the dumbbell endpoints. We call 
such cable ‘a leier’. (the Dutch maritime term ‘leier’ means 
the rope with both fixed ends).  

We assume the system mass center describes circular 
orbit, the cable length is small in comparison with orbit 
radius, the particle mass is small in comparison with the 
dumbbell mass, the cable do not leave the orbit plane. We 
study the dumbbell rotation caused by the small particle in 
the orbital frame of reference. It is well known that the 
dumbbell-shaped satellite has two types of relative 
equilibria. There are the stable ‘vertical’ equilibria and 
unstable ‘horizontal’ equilibria. We claim that the small 
particle sufficiently influence the dumbbell relative motion 
only if the dumbbell is initially quasi-horizontal. We prove 
that if the system Jacobi’s integral less than some constant 
then only librations about the ‘vertical’ equilibrium are 
possible. We note that there exist a set of the dumbbell 
relative motions tending to librations about the ‘horizontal’ 
equilibria. Factually, these asymptotic motions form the 
surface being an interstream between areas of  left-hand 
and right-hand rotations of the dumbbell. We deduce the 
equation of this interstream. 

 

Designations and parameters 
 

Consider a mechanical system consisting of a rigid 
body and a particle with mass 3m . Assume that the body is 

a dumbbell, i.e. it is composed of particles with masses 1m  

and 2m  connecting by weightless rod of length 2c. 
 

 

Fig. 1.  
 

 Without loss of generality, 12 mm ≥ . Suppose the 

particle 
3m  coast along on the cable with ends fixed to the 

dumbbell endpoints (Fig.1). This cable can be called ‘a 
leier’. Denote by 2a the cable length. Let C be the mass 
center for considered system and  O1 be the attracting 
center. Suppose C moves along the circular orbit, i.e. 
O1C=r=const and the particles 1m , 2m , 3m  do not leave 

the plane of this orbit. Moreover assume a<<r. Denote by 
ϕ  the angle between O1C and the rod. 

Evidently, the particle 3m  cannot leave the ellipse with 

foci in the dumbbell endpoints. The ellipse has eccentricity 
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a/ce=  and semi-axises a and b 22 ca −= . Let Oxy be 
a coordinate system with origin in the dumbbell midpoint 
(see fig.1). Clearly, if x and y is the coordinates of the 
particle 3m  the inequality  

0222 ≤−+ adyx ; 22 b/ad =  (1) 

is valid. The motion of 3m  is called the constrained one if 

(1) is equality. In this case the coordinates of 
3m  can be 

determine by formulae 
γcosax = , γsinby =  (2) 

where γ is an eccentric anomaly of the mentioned ellipse. 
If 3m  moves inside the ellipse then we say that the motion 

is the unconstrained one (or the free one). 
Let )mm/()mm( 1212 +−=µ  and 

)mm/(m 123 +=ν . Trivially, 10 << µ , 10 << e , 0>ν ,  

It is clear that the dimensionless parameters µ, ν, e and 
the variables ϕ, γ  determine the considered system 
dynamics completely in the case of constrained motion.  

 
Lagrangian and Jacobi’s integral 
 

Lagrangian for relative motion of the considered 
couple has a form [3,4]  

012 LLLL ++=  (3) 

where 

{ }+′+−+′= 2222
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Hence we have Jacobi’s integral L2 + W = h.
  

The prime ‘_' ’ denotes the derivative w.r.t. 

dimensionless time trMG /// 232121 −=τ , where G is the 
gravity constant, M is the mass of the attracting center.  
 
The constrained motion condition 
 
Note also that the constrained motion is possible only if 
[3,4] 

++′−− 22 111 ))(cose(e ϕγµ  

+′+′−+ γϕγ ))(cose( 112 22  

⋅
−

+−−′−+
2

1
221

2

3
1

2
222 e

sinsin)e(e ϕγγ

02311223 ≥+−+⋅ ))cos(cosecoscos( ϕγµγϕ . 
 

The dumbbell rotations caused by the small particle 
 

Let the mass 
3m  be small in comparison with the 

dumbbell mass, i.e. k << 1.  
It is well-known that there exist two types of 

stationary motions of the dumbbell-shaped satellite. There 
are ‘the vertical’ equilibria ( 0=ϕ or πϕ = ) and ‘the 

horizontal’ equilibria ( 2/πϕ ±= ).  

Obviously ‘the vertical’ equilibria are stable. The  
particle motion does not destroy these equilibria. Only 
some librations of the dumbbell about ‘vertical’ position 
are possible in this case. 

 It can easily be checked that if the dumbbell is 
‘quasi-horizontal’ initially then the particle motion along 
the leier force the upturning of the dumbbell.  The further 
motion of the dumbbell belongs to one of three types. 
There are ‘the libratory motion’ about the ‘vertical’ 
equilibria, ‘the rotary motion’ about mass center, the 
complicated ‘tumbling motion’ consisting of libratory and 
rotary segments.  

Let us remark that the dumbbell tends to librations 
about its ‘horizontal’ equilibria for some singular initial 
values of ),( γγ ′  . 

 
A sufficient condition for the dumbbell libration  
 

It is not hard to prove that if Jacobi’s integral constant 
h is smaller than )e(k/h* 2583 2 −⋅=  then only `the 

libratory motion' is possible. Consider a plot of W (Fig. 2). 
We see a mountain country consisting of parallel ridges 

k/ ππϕ += 2  and valleys kπϕ = , where k is integer. 

The ridge is the sequence of ‘peaks’ kπγ =  and saddle-

points k/ ππγ += 2 . In the saddle-point *hW = . 

Fig. 2. 
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Therefore if *hh < then the dumbbell ‘cannot pass through 
the ridge’ and rotations on complete angle are impossible. 
For instance, the libratory motion is observed for any 
initial value of ϕ and zero initial velocities if initial value 
of γ  is about 2/π . It can be shown numerically that ‘the 
rotary motion’ is guaranteed only if the initial value of γ ′  

is sufficiently big. 
 
The motion equations reduction for the symmetric 
dumbbell 
 

Note that ‘the tumbling motion’ is a set of right-hand 
and left-hand rotations with close to 1800 angles. Factually, 
chaotic rotations of the dumbbell are obtained.  

Consider a single rotation from this set. Let 
),,,( 1111 ϕϕγγ ′′  be values of ),,,( ϕϕγγ ′′  in the beginning 

of this rotation. It is clear that 0≈′ϕ  and 21 /πϕ ±≈ . 

(Without loss of generality it can be assumed that 
21 πϕ −≈ ). It is obvious that the motion in the vicinity of 

`horizontal' equilibrium determine the direction of the 
considered rotation. Substituting ψπϕ k/ +−≈ 2  in the 

dumbbell's motion equation we obtain 

03 =+−′ kDψψ , (4) 

−′+′− γγγγ 212 222 sine)cose(  

013 2 =−− γsin)e(  
(5) 

where γγγγ 212321 222 sine/sineeD −−′−′′−= . 

Here we are restricted to a case of symmetric dumbbell 

210 mm =⇔=µ  and neglect the terms of order higher 

than k .  
Note that (5) is equation of motion for the particle if 

the dumbbell is fixed in the ‘horizontal’ position [3]. 
Equality 

2
22222 131 hcos)e()cose( =−+′− γγγ  (6) 

is the Jacobi’s integral for (5). Analyzing phase portrait of 
(6) we see that there exist three types of equation (5) 
solutions. Solutions of the first type correspond to 
librations about 2/π± . They are periodic functions of 
τ  with period 

.
)h,(

d
T ∫ ′
=

2γγ
γ  

Solutions of the second type correspond to the asymptotic 
motions tending to 0=γ  or πγ = . It can easily be 

checked that in this case the cable weakens. Let us remark 
that such effect is also observed for the motions in some 
vicinity of the separatrix. Solutions of the third type 
correspond to rotations about the dumbbell. In this case 
derivative of γ  w.r.t. τ is the periodic function with period 

.
)h,(

d
T ∫ ′
=
π

γγ
γ

0 2

 

Moreover, solutions of (5) can be represented in a form 

)h,,(
T

)),(h,,( 211121 γτστ
π

γγγτγγ +=′=  

where )h,,( 21γτσ  is T-periodic function of τ . Thus if the 

motion is constrained then  
)(D)h,,,(),h,,,(),h,,,((DD τγτγγτγγτγ 1212121 =′′′=  is T-

periodic function of τ . (Here h2 depends on ),( 11 γγ ′ ). 
 
The reduced equations’ solutions 
 

Solutions of (4) can be represented in a form 
)(q)(p)( τττψ += , where  

( )∫
∞+ +−=
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32
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it follows that )(p τ  is T-periodic function of τ . Constants 

C1 and C2 are defined by formulae 
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where 

∫
+∞ −=
0 1

3 ξξξ d)(DeA , ∫ ∞−=
ξ ξ ξξ d)(DeB 1

3 . 

 
A surface of asymptotic motions as an interstream 
 

Clearly, if C1>0 then the dumbbell will turn 
counterclockwise and if C1<0 then the dumbbell will turn 
clockwise. Certainly, this criterion is valid only for the 
constrained motion.  

If C1=0 then the dumbbell remain in the vicinity of 
horizontal equilibrium, i.e. we have the dumbbell 
asymptotic motion tending to librations about 2/πϕ −=  

(or 2/πϕ = ). Clearly, this asymptotic motion is unstable. 

Thus the equation 
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ξξϕ
π

ϕ ξ d)(Dek∫
∞+ −=′++

0 1
3

11 2
3

3  (8) 

define a surface of asymptotic motions in the four-
dimensional space  of ),,,( 1111 ϕϕγγ ′′ . In other words, (8) 

is the equation of an original interstream dividing the 
space of initial values into the areas of rotations clockwise 
and rotations counterclockwise. Note also that if C1= C2=0 
then we have the dumbbell periodic motion about 
horizontal equilibrium. 
 

Fig. 3. 
 

 

Fig. 4. 
 
Examples of interstreams 
 

The right side of (8) depends only on 11 γγ ′,  and left 

side depends only on 
11 ϕϕ ′, . Therefore the interstreams 

can be depicted in the plane ),( 11 γγ ′  for fixed values of 

11 ϕϕ ′, . 

In particular, if the dumbbell is precisely horizontal 
( 21 /πϕ −= ; 01 =′ϕ  at the beginning of considered 

rotation then (8) is reduced up to the equality A=0. The 
corresponding interstream is depicted in Fig. 3 for e=1/2. 
In this figure the areas of right-hand and left-hand rotations 
are marked by the circular arrows. 

The similar interstream for 3901 ′°−=ϕ ; 01 =ϕ  is 

depicted in Figure 4. Here also e=1/2. 
In figures 2 and 3 the shadowed area corresponds to the 

motion with the weakened cable. 
 

On integral A computation 
 

Finally note that the infinite integral A is reduced up to 
definite. It follows from equalities 

=−= ∫
+∞

0 13 ξξξ d)(D)exp(A  

=−= ∑ ∫
∞

=

+

0

1

13
n

T)n(

nT

d)(D)exp( ξξξ  

=++−= ∑ ∫
∞

=00
13

n

T

d)nT(D))nT(exp( ξζζ  

=−−= ∑∫
∞

=00
1 33

n

T

)nTexp(d)(D)exp( ζζζ  

∫ −
−−

=
T

d)(D)exp(
)Texp( 0

13
31

1
τττ  

 
Further, using γγτγτ d)h,,,(d 21′=  we can change the 

variable in the last integral. For instance, consider the area 
of the particle ‘positive rotations’. In this area 

)e(h 2
2 13 −>  and 0>′γ . Here using (6) we get 
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From (9) it follows that 
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Conclusions 
 

In this paper the space tethered system consisting of the 
dumbbell-shaped rigid body and the particle of small mass 
is considered. The particle moves along the cable with 
ends fixed in the body. The dumbbell rotations caused by 
the particle are studied. The sufficient condition of the 
dumbbell librations about its stable equilibrium is 
obtained. The family of asymptotic motions tending to 
librations about unstable equilibria is found. This family 
forms the interstream separating the area of the dumbbell 
rotations clockwise from the area of rotations 
counterclockwise. The equation of the interstream is 
deduced. 
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