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Abstract. We consider a special space tethered system dogsidt a dumbbell-shaped rigid body and a partidlee
particle coast along on the cable. The cable erglplaced in the dumbbell endpoints. We call suddtesn ‘the system
with leier constraint (the Dutch term ‘leier’ meathe rope with both fixed ends). We assume thasyls¢em mass center
moves along the circular orbit in the Newtonian €a&nForce Field. We study the dumbbell's relativetion caused by
the particle of small mass in the orbital frameeference. We deduce a sufficient condition fordflons of the dumbbell
about its stable equilibrium. We find a family &ietdumbbell's asymptotic motions tending to litmasi about unstable
equilibrium. The surface of such asymptotic motigssn interstream separating the areas of the Haltdright-hand
and left-hand rotations. We deduce an equatiohisfsurface.
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Introduction a dumbbell, i.e. it is composed of particles witagsesm
. and m, connecting by weightless rod of length 2
Space tethered systems are one of the most inteyest
topics in dynamics. For the first time the motioh a
particle tethered to a spacecraft has been sughestd,
2]. Presently there are hundreds papers devotedrious
aspects of the motion of tethered satellites. is paper we
study some generalization of the classic couple.

We consider the system that moves in the Newtonian
Central Force Field and consists of a dumbbell-stiap
rigid body and a particle. The particle coasts glon the
cable with ends placed in the dumbbell endpoints. oAl
such cable ‘a leier’. (the Dutch maritime termeeimeans
the rope with both fixed ends).

We assume the system mass center describes circula
orbit, the cable length is small in comparison wattbit
radius, the particle mass is small in comparisoth thie
dumbbell mass, the cable do not leave the orbiteplsve
study the dumbbell rotation caused by the smaligarin
the orbital frame of reference. It is well knowraththe
dumbbell-shaped satellite has two types of relative o

equilibria. There are the stable ‘vertical’ equilédo and 1

unstable ‘horizontal’ equilibria. We claim that tisenall .

particle sufficiently influence the dumbbell relatimotion Fig. 1.

only if the dumbbell is initially quasi-horizontalVe prove ] )

that if the system Jacobi's integral less than soarestant Without loss of generality,m, >m,. Suppose the

then only librations about the ‘vertical’ equilibom are particle m, coast along on the cable with ends fixed to the
possible. We note that there exist a set of thebtath 4 mppell endpoints (Fig.1). This cable can be dalte
relative motions tending to librations about therikontal’  |aier’. Denote by 4 the cable length. LeE be the mass

equilibria. Factually, these asymptotic motionsnfothe  .anter for considered system an®, be the attracting
surface being an interstream between areas ofhdefl  .opier. Suppos€ moves along the circular orbit, i.e.

and right-hand rotations of the dumbbell. We dedilnee 0,C=r=const and the particlesy, m,, m, do not leave
1 21

equation of this interstream. ) ]

the plane of this orbit. Moreover assuare<r. Denote by
¢ the angle betweed,C and the rod.
Consider a mechanical system consisting of a rigid Evidently, the particlem, cannot leave the ellipse with

body and a particle with mass,. Assume that the body is fqcj in the dumbbell endpoints. The ellipse haseaticity

Designations and parameters
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e=c/ a and semi-axisea andb=+/a® —c? . LetOxybe
a coordinate system with origin in the dumbbell paicht
(see fig.1). Clearly, ifx andy is the coordinates of the
particle m, the inequality

x*> +dy? —a?<0; d=a’/b? (1)

is valid. The motion ofm, is called the constrained one if

(1) is equality. In this case the coordinatesnpef can be
determine by formulae

Xx=acosy, y=bsiny 2)

where yis an eccentric anomaly of the mentioned ellipse.

If m, moves inside the ellipse then we say that theanoti
is the unconstrained one (or the free one).
Let p=(my —my)/[(m, +my )
v=my/(m, +m). Trivially,0< 4 <1, 0O<e<1, v>0,
It is clear that the dimensionless parametens e and

and

Vi1-e®(1-eucosy (@' +1)% +
+2(1-e*cos’y )@ +1)y' +

1-¢?

+1-e?y'? - g(l— e®)sin2y sin2¢ +
-(3cos2¢p cos2y +1-eucosy(l+3cos2¢)) = 0.
The dumbbell rotations caused by the small particle

Let the massm, be small in comparison with the

dumbbell mass, i.& << 1.

It is well-known that there exist two types of
stationary motions of the dumbbell-shaped satelliteere
are ‘the vertical' equilibria 4=00r ¢=7) and ‘the
horizontal’ equilibria ¢ = +7/ 2).

Obviously ‘the vertical’ equilibria are stable. The

the variables ¢, y determine the considered systemparticle motion does not destroy these equilib@mly

dynamics completely in the case of constrained onoti
Lagrangian and Jacobi’s integral

Lagrangian for relative motion of the considered
couple has a form [3,4]

where
1
L, :E{go’z +k[(1-2eucosy +e*cos’ y)p'* +
I
i+ V1- e’ (1- 2eucosy )y’ +(1-e”cos® y )y'?
L, = kecosy (ecosy — 2u )p’

%=4N=§m§¢+
N k{%ez cosgp — gey coSsy + gez cos2y —
—jey[(l— Vi-e?)cos(2p -y )+
F (1441 e )eos(2p + 7))+
+1‘Z[(1—\/§)2 cos(2¢ — 7 )+
f(1+‘/§)2 cos(2(p+7)J}-

_ v
T 201 2y
e (1-u")
Hence we havéacobi’s integral L,+ W = h.

The prime denotes the derivative w.r.t.

dimensionless timer = G 2M ¥/ 2y 3/2¢ | whereG is the
gravity constantiV is the mass of the attracting center.

The constrained motion condition

Note also that the constrained motion is possilolly @
[3.4]
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some librations of the dumbbell about ‘vertical’sgmn
are possible in this case.

W
f ,:.. e
5 0
4
y : o 1 @
3/ T L2
Fig. 2.

It can easily be checked that if the dumbbell is
‘quasi-horizontal’ initially then the particle moti along
the leier force the upturning of the dumbbell. Theher
motion of the dumbbell belongs to one of three $ype
There are ‘the libratory motion’ about the ‘vertica
equilibria, ‘the rotary motion’ about mass centéng
complicated ‘tumbling motion’ consisting of libratoand
rotary segments.

Let us remark that the dumbbell tends to librations
about its ‘horizontal’ equilibria for some singulanitial
values of(, »').

A sufficient condition for the dumbbell libration

It is not hard to prove that if Jacobi’s integrahstant
h is smaller thanh =3/8-k(5e*-2) then only ‘the

libratory motion' is possible. Consider a plotf(Fig. 2).
We see a mountain country consisting of paralléyes
p=nl2+zk and valleysy = 7k , wherek is integer.

The ridge is the sequence of ‘peaks: sk and saddle-
points y=x/2+7k. In the saddle-pointw =h".
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Therefore ifh < h* then the dumbbell ‘cannot pass throughwhere o(z,y, ,h, ) is T-periodic function ofz . Thus if the

the ridge’ and rotations on complete angle are ssjide.
For instance, the libratory motion is observed &y
initial value of ¢ and zero initial velocities if initial value
of y is aboutz /2. It can be shown numerically that ‘the
rotary motion’ is guaranteed only if the initiallue of |,’

is sufficiently big.

The motion equations reduction for the symmetric
dumbbell

Note that ‘the tumbling motion’ is a set of righastd
and left-hand rotations with close to £&hgles. Factually,
chaotic rotations of the dumbbell are obtained.

Consider a single rotation from this set.
(71.71,01,0;) be values of(y,»".0,¢") in the beginning

of this rotation. It is clear thap'~0 and ¢, ~+7/2.

(Without loss of generality it can be assumed that

¢, ~—n/2). Itis obvious that the motion in the vicinity of
“horizontal' equilibrium determine the direction tie
considered rotation. Substituting~ —r / 2+ +/ky in the
dumbbell's motion equation we obtain
v'—3y + Dk =0,
2(1-e*cos? y )y'+e’y'sin2y —
—-3(1-¢e®)siny =0
whereD = v1-e?y"—e?y'sin2y —3/ 2y/1-e? sin2y .
Here we are restricted to a case of symmetric dethbb

(4)
(®)

u=0s m =m, and neglect the terms of order higher

thanyk .

Note that (5) is equation of motion for the pa#didl
the dumbbellis fixed in the ‘horizontal’ position [3].
Equality

(1-e*cos?y )y'? +3(1-e?)cos® y = h, (6)
is the Jacobi’s integral for (5). Analyzing phasetmit of
(6) we see that there exist three types of equatf)n
solutions. Solutions of the first type correspond t
librations about+z /2. They are periodic functions of
7 with period

T=§—791—<
7'(7.hy)
Solutions of the second type correspond to the piytn
motions tending toy =0 or y = . It can easily be
checked that in this case the cable weakens. Legmark
that such effect is also observed for the motionsdme
vicinity of the separatrix. Solutions of the thitype
correspond to rotations about the dumbbell. In tdse
derivative ofy w.r.t. ris the periodic function with period

_f_dr
07'(7:hy)
Moreover, solutions of (5) can be representedforia
, T
7y =y(r.ya(rr1)) = ?Ha(f,n,hz )

Let

motion is constrained then

D = D(7"(7.,72.0).7' (727002 )7 (70720, ) = Dy(7) 1S T-
periodic function ofz . (Hereh, depends orfy,,7;)).

The reduced equations’ solutions

Solutions of (4) can be represented in a form
w(z)=p(r)+q(7), where
()= Y& exp(r3)] “ exp(-£VB)D(& Y +
2\/5 r 1
+exp(-ry3)[, expE3)Dy(£ )dé)
Ar)= 2—\1@ (Cl exp(cy/3) + C,exp(-7+/3)

From equalities

(7)

Pz +T)=

K (exp((r + T WV3)[ ™ exp(-£3)Dy( £ )dE +

T+T

2V3
rexp(-(z+T W3)["} exp(c3)Dy( £ oz )=
Wk
23
[ exp((& +TW3)D(L +T )dS +
rexp(r+TNW3)-
T ex(¢ + TNB)DYS + T )=
Wk
23
rexp(-y3)[", exp(E3)Dy(£ ) )= p(r)
it follows that p( ) is T-periodic function ofr . Constants
C,andC, are defined by formulae

Cf=WU{JiQ+V§”+%J—HMAa

Var
2

(exp(r +T )x/§)-

(expra3)[~ exp(-£43)Dy( & e +

Cz — k—l/2[\/§¢1 + (0]!-] _ kl/ZB ,

where

A= [7eBDy(£)de, B=[7 ey (¢)de.

A surface of asymptotic motions as an interstream

Clearly, if C>0 then the dumbbell will turn
counterclockwise and I€,<0 then the dumbbell will turn
clockwise. Certainly, this criterion is valid onfpr the
constrained motion.

If C;=0 then the dumbbell remain in the vicinity of
horizontal equilibrium, i.e. we have the dumbbell
asymptotic motion tending to librations abgut —z / 2

(or ¢ = z / 2). Clearly, this asymptotic motion is unstable.
Thus the equation
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\/‘ The similar interstream foryp, = —-90°3'; =0 is
71' o \/5 (%1 P

V3g, + +o'=k[, "€ Dy(&£)ds (8) depicted in Figure 4. Here alsg1/2.

In figures 2 and 3 the shadowed area corresponitie to

define a surface of asymptotic motions in the four- otion with the weakened cable.

dimensional space ofy,,y;,p,,p;)- In other words, (8)
is the equation of an originahterstream dividing the  On integral A computation
space of initial values into the areas of rotatiolbekwise

and rotations counterclockwise. Note also tha&t,if C,=0 Finally note that the infinite integra@ is reduced up to
then we have the dumbbell periodic motion abougefinite. It follows from equalities
horizontal equilibrium. A= I*w EXP(—f\@)Dl(§ )& =
o (N+1)T
=Y | exp(-£V3)Dy(¢)de =
n=0 nT
o T
@ = X Jexp((¢ +nT)V3)D(¢ +nT s =
2 =00
T 0
= [eXp-CV3)D(¢ )L T exp(-nTV3) =
0
0 ﬁ\ v Yilt —jexp( 7/3)Dy(7 )z
1-exp(-T+/3) '
Further, usingdr = '(z,,;,h, )dy we can change the
v ey variable in the last integral. For instance, coesithe area
of the particle ‘positive rotations’. In this area
h, > 3(1-e?) and ' > 0. Here using (6) we get
Fig. 3. 7' =4r(h.y), 9)
where
~3(1-¢?
: r(hy,,y)= W
i 1-€e’cos y
v ¥V h, = (1-€’cos’ 1, )7;? + (1-e?)cos y; -
A
From (9) it follows that
‘ Y1 dy
i v T=[ ——
0 /2 T Iylvr(hzv7)
and
Top 9
ry ~ 0 Nr(hy,7)
Hence
o\ 1

. A=— = .
Fig. 4. 1o exp(—T\@)

Examples of interstreams

] ) -j’””ex dé D(hy.7)
The right side of (8) depends only on,y;, and left 71 \/r(hz 7) \/r(hz 7)
side depends only o, e, . Therefore the interstreams
can be depicted in the plang,,y,) for fixed values of \here

P11 -
In particular, if the dumbbell is precisely horizah D,(h,,7)=-€?sin2y -

(p,=-712; @;=0 at the beginning of considered \/—2 o
. . 1-e”3sin” y +4/r(h,,
{ sin’ s+ i), r(hz,y)}.

rotation then (8) is reduced up to the equahts0. The > >
corresponding interstream is depicted in Fig. 3efet/2. 2(1-e“cos”y)
In this figure the areas of right-hand and left-dhaotations

are marked by the circular arrows.
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