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Abstract. 
 In systems with supplementary degrees of freedom dynamical directivity followed by chaos may exist. 
Deterministic systems of such types are analyzed in the paper. Their steady state regimes which take place according to 
dynamically self setting trajectories or vibration modes depending on the eigenfrequencies of the system itself and on the 
excitation frequencies and parameters are determined. The research is performed by applying approximate analytical 
methods and numerical ones. 
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Introduction 
 
 Dynamical directivity is the quality of a definite 
type of nonlinear dynamical systems having supplementary 
degrees of freedom to choose its structure or laws of 
motion or trajectories depending on the parameters of the 
system itself and of the forces excited by it [3]. This 
research paper is one of the investigations of the effect of 
self-organization [1, 2]. Theory of stability and chaos are 
developed in a number of research publications [4 – 12 and 
others], which were useful in the process of preparation of 
this paper. 
 Here dynamical directivity of deterministic 
systems is analyzed: 

1. the simplest system, 
2. system with concentrated parameters, 
3. system with distributed parameters. 

 The research is performed approximately 
analytically by using the method of perturbation, by 
numerical methods and experimentally. 
 
1. The elementary system 
 
 The case 1 of the input member – the exciter of 
vibrations is attached to the output member 2 by a hinge 
joint. The mass 3 exciting the vibrations moves in the line 
AB. The output member is supporting to the immovable 
plane XOY. Viscous friction with coefficients xH  and 

yH  respectively according to the axes OX and OY is 

acting between them. The mass 3 is moving according to 
the law .cos tAABz ω==  The external force constP =  

is acting to the case of the exciter of vibrations at the point 
A. The system is moving with the velocity .sɺ  
 Coordinates of the points are ( ),, yxA  

( ).sin,cos αα zyzxB ++  

 Kinetic energy and the dissipative function of the 
system: 
 

 
Fig. 1. The elementary system: 1 – input member, 2 –  output 
member, 3 – mass exciting vibrations 
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.2 222 αα ɺɺɺ HyHxHD yx ++=              (1) 

 Differential equations of motion: 

( ) ,0=+ αα α ɺHM i  

( ) ( ),cos αβ +=+ PxHxI xi ɺ  

( ) ( ),sin αβ +=+ PyHyI yi ɺ               (2) 

where the influence of the forces of inertia to the 
coordinates ,α  ,x  y  respectively: 

( ) ( ),cossin2 αααααα yxzzmzIM i ɺɺɺɺɺɺɺɺɺɺ +−++=

( )
( ) ( )[ ],sin2cos2 ααααα ɺɺɺɺɺɺɺ

ɺɺ

zzzzm

xmxI xi

+−−+

+=
 

( )
( ) ( )[ ].cos2sin2 ααααα ɺɺɺɺɺɺɺ

ɺɺ

zzzzm

ymyI yi

++−+

+=
        (3) 

 In quasi-linear case steady state motions are: 
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,
x

x m

m
=µ  ,

y
y m

m
=µ  ,

x

x
x m

H
h =  .

y

y
y m

H
h =  

 In the case of steady state motions: 

( )
( )[ ] ,02sin 0

2 =−+−≡

≡

αµµµµω

α

yxxyxy

i

hh

M
(5) 

from here in the case when: 

( )[ ] ,02 >−+− yxxyxy hh µµµµω  

00 =α  is a stable regime, 

20

π
α =  is an unstable regime.              (6) 

 When the sign of the inequality is the opposite the 
stable and unstable regimes change into the opposite ones. 
 The average velocity is as follows: 

,yx sss
�
ɺ

�
ɺ

�
ɺ +=  

and the angle of its direction: 

( )
.

1 0αβ
γ

++
=

tg
H

H

m

m

tg

y

x

x

y

              (7) 

2. System with concentrated parameters 
 

 
Fig. 2. The system: 1 – input member, 2 – output member, 3 – 
mass exciting vibrations, 4 and 5 –  directing members 
 
 In the same way as in Fig. 1 the input member – 
the case 1 of the exciter of vibrations is attached by a hinge 
to the output member 2. The mass 3 exciting vibrations is 
moving along the line AB. The output member supports to 
the immovable plane XOY. Viscous friction with the 
coefficients 0xH  and 0yH  respectively according to the 

coordinates OX and OY is acting between them. 
Mass 3 is moving according to the law 

.coscos tAtABz ωω ==  External force constP =  is 
acting to the case of the exciter of vibrations at the point A. 
The system is moving with the velocity .sɺ  Member 2 is 
connected with the member 4 by an elastic dissipative 
element with the coefficients yH  and ,yC  and member 4 

is connected with the member 5 by an element with the 
coefficients xH  and .xC  

 Kinetic and potential energies of the system and 
the dissipative function are: 
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( ) ( ) ,2 2
4
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5 yyCxxC yx −+−=Π  
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Where: 
 

,421 mmmmmx +++=  ,21 mmmm y ++=  

,3 mm =  .544 mmm y +=  
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 Differential equations of motion of the system are 
expressed in the following way: 
 

( ) ,0=+ αα α ɺHM i  

( ) ( ) ( )
( ),cos

055

αβ +=

=+−+−+

P

xHxxHxxCxI xxxi ɺɺɺɺ
 

( ) ( ) ( )
( ),sin

044

αβ +=

=+−+−+

P

yHyyHyyCyI yyyi ɺɺɺ
 

( ) ( ) ,04444 =−+−+ yyHyyCym yyy ɺɺɺɺ  

( ) ( ) ,05555 =−+−+ xxHxxCxm xx ɺɺɺɺ              (9) 

 
where ( ),αiM  ( ),xI i  ( )yI i  are determined from the 

equations (2). 
 After introducing the notation: 
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where ε – a small parameter, steady state motions 
according to ,α  ,x  ,y  ,4y  5x  are sought with the help 

of power series with respect to ε, for example 
.10 …++= εααα  

 After introducing the notations: 

,
x

x m

m
=µ  ,2

x

x
x m

C
n =  ,

x

x
x m

H
h =  ,0

0
x

x
x m

H
h =  

,
x

x m

P
P =  ,

y
y m

m
=µ  ,2

y

y
y m

C
n =  ,

y

y
y m

H
h =  

,0
0

y

y
y m

H
h =  ,

y
y m

P
P =  ,

5

2
5 m

C
n x=  ,

5

5
5 m

H
h =  

,
4

2
4

y

y

m

C
n =  ,

4
4 m

H
h y=                      (11) 

 
equations of zero approximation are the following ones: 
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 From the equations (12), when 0== yx HH ,  

the following is obtained: 
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where it is denoted: 

( ),2
5

22 nnxx +−=ωλ  ( ).2
4

22 nn yy +−=ωλ  

 The condition of periodicity of 1α  on the basis of 

equation (10) is: 
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which after rearrangements becomes the following one: 
 

,02sin 0 ==Λ αZ              (15) 
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where the sign change of Z depending on 2ω  is 
determined by: 
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2
1kω  and 2

2kω  are the roots of the following equation: 

,00
2

2
4

4 =++ aaa ωω             (18) 

Where: 

,4 yxa µµ +−=  

( ) ( ),2
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2
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2
0 nnnnnna xyyx +++−= µµ  

 Dynamical stationary positions according to the 
equation (15) are: 

,
2

,00

π
α =               (19) 

and the condition of stability is: 

.02cos 0 >αZ              (20) 

 As follows from the equation (17) sZ  according 

to 2ω  may change sign at: 
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when .000 == yx hh  If ,00 ≠xh  00 ≠yh  then those 

values 2
iω  ( )4,,1…=i  move to the sides from the values 

shown in the equations (21). 
 Case study: 

,00054 ==== yx hhxy              (22) 

by taking into account the equations (8 - 11) the following 
differential equations are obtained: 
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 In a similar way as for the previous case here: 
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 Z is the square of the eigenfrequency of the case 
of the exciter of vibrations α. 
 Stability of the dynamical stationary positions 
changes when the sign of sZ  passes from positive to 

negative and vice versa. 
 When the forces of friction 0== yx hh  then sZ  

changes sign when 2ω  passes through the values ,2
xn  2

yn  

and .2
kω  This is represented in Fig. 3, where stable and 

unstable zones at ,yx nn <  yx µµ >  for various values of 

kω  are shown. 

 
Fig. 3. Stationary zones: _____ stable, - - - unstable, graphical 
relationships represent the square of the eigenfrequency Z of the 
variation of α0 about the stationary position (positive values of Z 

about 
2

π
 are represented in the negative direction of the vertical 

axis) 
 
 At small values of Z motions of chaotic type arise. 
 The forces of friction shift the transitional points 
of .sZ  If the forces of friction are small, then assuming 

,22
xx hh ε=  ,22

yy hh ε=  where ε – a dummy small 

parameter, those points are sought with the help of the 
power series with respect to ε, for example 
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Numerical analysis of the basic system 
 

The set of differential equations of motion in 
Equations (22, 23) is solved using direct time marching 
techniques. The results of simulation are presented in 
Poincare diagram in Figure 4. At every discrete value of ω 
time marching is continued until the transient processes 
cease down. Then the trajectories in phase plane α − αɺ are 
sectioned by plane 0=αɺ . It can be noted that the vibration 
exciter can rotate in a steady state regime of motion and 
thus plotting of α could be quite complicated due to 
possible boundlessness of α . Therefore, every value of α 
produced by Poincare sectioning is mapped into the 

interval [ ]ππ ,−  by simple modulus π2  transformation 
adding or subtracting 2πk with appropriate k >0.  

The amplitude of oscillation A is decreased at 
increasing ω to preserve constant maximum kinetic energy 
of the exciter (at constant α ):  

( )
const.

2

2

=
ωAm

             (29) 

The following parameters were selected for 
numerical simulation: m = 0.1; mx = 2,1; my = 1,1; Cx = 1; 
Cy = 1; hx = 0.05; hy = 0.05. The following parameters are 
used: nx ≈ 0.690; ny ≈ 0.954; ωx ≈ 0.686; ωy ≈ 0.976.   

Figure 4 shows excellent correlation between 
analytical and numerical analysis. In the region 

xωω <<0  the exciter is oscillating in the x-axis 

direction (angle α is zero in the steady state regime of 
motion). The transient process is illustrated in Figure 5 at 
ω = 0.4.  

The exciter orients itself in the direction of y-axis 
(angle α equal to π/2 or −π/2) in the frequency range 

yx ωωω << . The transient dynamics is illustrated in 

Figure 6 at ω = 0.7. Chaotic system response is observed in 
a relatively short frequency range around ω = 0.75.  

 
 

 

Fig. 4. Poincare map at m = 0.1; mx = 2,1; my = 1,1; Cx = 1; Cy = 1; Hα = 0.05; hx = 0.05; hy = 0.05; 
ω
15.0

=A  
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Fig. 5. Transient dynamics at ω = 0.4 

 

 
Fig. 6. Transient dynamics at ω = 0.7 

 
Finally it can be noted that the regions of chaotic 

response shrink at lower values of the exciter mass m and 
the amplitude A. But in that case the duration of the 
transient processes is extended, which is a quite natural 
result. 
 
3. System with distributed parameters 
 
 The analyzed system is a beam, to which the 
cases of the exciters of vibrations which were analyzed 
earlier are attached by hinges. 
 Differential equations of motion are: 
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 Analytical calculations are performed in the same 
way as for the systems with concentrated parameters. The 

values 0=α  and 
2

π
α =  are obtained and this means 

that in the system transverse or longitudinal waves exist. 
 Further analysis is performed by numerical 
methods. 

An in-plane elastic cantilevered plate is analyzed. 
The numerical model of the system is built meshing the 
continuous structure by finite element method [12]. 
Differential equations of motion representing the linear 
elastic structure are derived in the following form: 

 

[ ]{ } [ ]{ } [ ]{ } { },FXCXHXM =++ ɺɺɺ            (31) 

 
where [M], [H], [C] – mass, damping and stiffness 

matrixes appropriately; { } { } { }XXX  , , ɺɺɺ  − global vectors of 

acceleration, velocity and displacement; { }F  − vector of 

external forces. 

A vibration exciter with movable mass m and an 
additional degree of freedom (rotation) is attached to one 
of the nodes of the structure (black dots in Figure 7). It is 
clear that every node of the structure (non-cantilevered) 
corresponds to two degrees of freedom in Equation (31). 
Let’s denote those two degrees of freedom corresponding 
to node to which the exciter is attached as r (corresponding 
to displacement in direction of x-axis) and s 
(corresponding to displacement in direction of y-axis).  

Then the external forces acting to the r-th and s-th 
degrees of freedom will take the following form: 
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where ( )xFin  and ( )yFin  are r-th and s-th components 

of vector { }F . A separate differential equation describes 

the variation of angle α : 

( ).cossin2 αααα

αα α

sr xxzzmz

HJ

ɺɺɺɺɺɺɺɺ

ɺɺɺ

+−+−=

=+
       (33) 

Analysis of a continuous structure coupled with a 
discrete system is a computationally demanding problem, 
especially when one of the systems is linear and another – 
nonlinear [6]. The terms rxm ɺɺ  and sxm ɺɺ  are brought from 

Equation (33) to the left side of Equation (31) in order to 
preserve the stability of numerical time marching codes. 
Thus the mass matrix of the elastic structure is augmented; 
value m is added to the diagonal elements in r and s 
positions of the mass matrix. This augmentation naturally 
represents the mass increase of the node to which the 
vibration exciter is attached.  

Initially, eigenshapes and natural frequencies of 
the elastic structure are calculated (with the augmented 
mass matrix; m = 0.1). The first four eigenshapes of a 
cantilevered plate are presented in Figure 9 where grey 
lines stand for the structure in the status of equilibrium; 
dark solid lines – for appropriate in-plane eigenshapes. 
Natural frequencies are printed at the bottom of 
appropriate eigenshapes. 

 

 
Fig. 7. The first four eigenshapes and natural frequencies of the elastic structure 
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Next, the transient processes are analyzed at 
different frequencies of excitation. In our model r = 23 (the 
degree of freedom representing the motion of the node to 
which the exciter is attached in the direction of the x-axis) 
and s = 24 (same node in the direction of the y-axis). 
Transient process at ω = 0.4 is presented in Figure 8; at 
ω = 0.65 – in Figure 9. It can be clearly seen that at ω = 
0.4 angle α  settles at 0, while the node to which the 

exciter is attached oscillates in the direction of x-axis (the 
same direction as the exciter itself). On the contrary, at 
ω = 0.65 angle α  settles at 2π , while both the node and 

the exciter oscillate in the direction of y-axis. That is even 
more clearly illustrated in phase plane x-y in Figure 10 
where the transient dynamics of all nodes of the structure 
is plotted simultaneously. 

 

 
 

Fig. 8. α , rx and sx  versus time – transient process at ω = 0.4 

 

 
 

Fig. 9. α , rx and sx  versus time – transient process at ω = 0.65 
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(a) (b) 

 
Fig. 10. Transient processes (traces of the nodes) in the phase plane at ω = 0.4 (a) and ω = 0.65 (b) 

 
 

 
 

Fig. 11. Poincare map of the node to which the exciter is attached 
 

Finally, Poincare map is constructed for steady 
state processes at different frequencies of excitation 
(Figure 11). It can be noted that the regime of motion at 

0=α  looses its stability at frequencies around 0.5. Then 
the process stabilizes again around 6.0=ω , but already 

around 
2

π
α = .  

Different nodes could be selected for attachment 
of the vibration exciter. General recommendation would be 
to select such nodes, which are most sensitive to external 
excitation. In our example it would be not a good idea to 
select a node near the motionlessly fixed nodes. In 
principle, the observed phenomena would be the same, but 
the sensitivity and the accuracy of the estimates would be 
considerably reduced. 
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Concluding remarks 
 

The effect of self-orientation is presented and 
illustrated in this paper. A vibration exciter with an 
additional angular degree of freedom can serve as a 
detector of natural frequencies. Approximate analytical 
analysis provides insight into the principles of dynamical 
self-orientation and its applicability for the detection of 
fundamental frequencies of elastic structures. The 
oscillating mass and the amplitude of oscillations of the 
exciter must be relatively low compared to the structure 
under investigation in order to provide sufficiently accurate 
estimates. 

It is determined that in the systems of analyzed 
type in the range of frequencies of harmonic excitation 
from zero up to the first critical frequency, which is equal 
to the partial frequency regimes of chaotic type do not 
exist. In higher frequency ranges of excitation there are 
intervals where regimes of chaotic type exist. 
                 Only for the frequencies which are higher than 
the first critical frequency regimes of chaotic take place, 
but the average positions of motion take place  
about the positions calculated analytically. 
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