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Abstract.

In systems with supplementary degrees of freedgmambical directivity followed by chaos may exist.
Deterministic systems of such types are analyzetiénpaper. Their steady state regimes which tdédeepaccording to
dynamically self setting trajectories or vibratiomdes depending on the eigenfrequencies of themyisself and on the
excitation frequencies and parameters are detednmihke research is performed by applying approxénsalytical
methods and numerical ones.

Keywords: dynamical directivity, trajectories and modes daftion, stability, chaos.

Introduction is acting to the case of the exciter of vibratiahshe point
A. The system is moving with the velocigy
Dynamical directivity is the quality of a definite Coordinates of the points are A(x,y),

type of nonlinear dynamical systems having supptearg
degrees of freedom to choose its structure or lafvs
motion or trajectories depending on the parameaiéithe
system itself and of the forces excited by it [3his SYyStem:
research paper is one of the investigations ofeffext of
self-organization [1, 2]. Theory of stability antams are (2]
developed in a number of research publications J2 and
others], which were useful in the process of prafan of
this paper.
Here dynamical directivity of deterministic
systems is analyzed:
1. the simplest system,
2. system with concentrated parameters,
3. system with distributed parameters.
The research is performed approximately
analytically by using the method of perturbatiory b
numerical methods and experimentally.

B(x+zcosa, y+ zsina)
Kinetic energy and the dissipative function of the

1. The elementary system

Fig. 1. The elementary system: 1 — input member, 2 — uutp
The case 1 of the input member — the exciter ofember, 3 —mass exciting vibrations
vibrations is attached to the output member 2 bynge
joint. The mass 3 exciting the vibrations moveshia line 2T = mx)'(2 +my®+
AB. The output member is supporting to the immovable Y
plane XQY. Viscous friction with coefficientsHX and 22+ 72%a% +

H, respectively according to the ax@X and OY is +2>'<(Zcosa—zdsina)+ +Ja?,

acting between them. The mass 3 is moving accoriting

the law z= AB = Acosawt. The external forceP = const + 2y(zsma +za COSO()
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2D=H X)-(Z +H yyZ + Hadz. 1) 2. System with concentrated parameters
Differential equations of motion: X

M, (a)+H,a=0, y s

l,(x)+H x=PcodS+a)

l,(y)+H,y="Psin(8+a) )

where the influence of the forces of inertia to the
coordinatese, X, y respectively:

M, (a)=1d+mz(zé + 226 - %sina + § cosa),

|, (X)=m, %+
+ml(2— za? )cosa — (zdi + 224 )sina}
I i (y = my y+ (3) X
+ m[(z_ zdz)sina +(Zd + 2202)0080(] Fig. 2. The system: 1 — input member, 2 — output membey, 3
- . mass exciting vibrations, 4 and 5 — directing merab
In quasi-linear case steady state motions are:
o, = Ccongt, In the same way as in Fig. 1 the input member —
P the case 1 of the exciter of vibrations is attada hinge
Xy = —tCOS(ﬂ + a)+ to the output member 2. The mass 3 exciting vibratiis

moving along the lindB. The output member supports to
the immovable planeXQY. Viscous friction with the

X

wACOSx . - : .
%(— @Ccosmt + h, Slna)t), coefficients H,o and Hq respectively according to the
o+ hx coordinate®©X andOY is acting between them.
_ P tsi ( ) Mass 3 is moving according to the law
Yo = H sing +a)+ z = ABcoswt = Acoswt. External forceP = const is
Y ) (4) acting to the case of the exciter of vibrationthatpointA.
,uya)ASInao . The system is moving with the velocity Member 2 is
+ o2+ 12 (—a)COSa)t+hy S'nWt)’ connected with the member 4 by an elastic dissigati
y element with the coefficientsi, and Cy, and member 4
_m _m h = H, h — H, is connected with the member 5 by an element with t
’ux_mx’ ’uy_my’ X_mx’ y_my' coefficientsH, andC,.
In the case of steady state motions: . _Kingtic and.potential energies of the system and
T the dissipative function are:
Mi(O‘)E
o? Jsi ®) ZT=mx*+m,y>+
=|w (,uy—,ux)+,uyhx—,uxhy sin2qa, =0, =m, VY
f[rorzn(here in th)e casc:]when: ) ] 72 4+ 72262 +
@ — U )+ - >0, S .
Hy = H )T HyThe ™ Hdlly +m + 2x(zcosa — zasina )+ | +
a, =0 is a stable regime, + 2y(ZSina ‘70 COSa)
Vs
= i .2 ‘2 - 2
a, > is an unstable regime. (6) +mgXE +m,, 7+ Ji?,

When the sign of the inequality is the opposite th o171 = C (X— X )2 +C (y_ y )2’
stable and unstable regimes change into the ogpoisés. X > y 4

The average velocity is as follows: 2D=H X()‘(_ Xs )2 +H y(y_ V., )2 +

e _ e e (8)
S=Sct Sy, +H X2 +H ¥ +H, a2,
and the angle of its direction:

my Where:

mX
gy = - Q) m,=m, +m, + m+m,, m, =m +m, +m,

1+ —*tg(f+a _ _
H, 9(B+a,) m,=m, m, =m, +m.
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Differential equations of motion of the system are From the equations (12), whehl, =H, =0,

expressed in the following way: the following is obtained:

M. (a)+H, a=0, Y = 1t oAcosE (@® -n2)

1, (X)+C, (x— x5 )+ H, (X=X )+ H %= ° Olia)2+hfo(a)2—n52)2
=Pcods +a),

Ii(y)+Cy(y—y4)+Hy(y—y4)+Hy0y= {_

A, hos
——— wcosot + h, sinat |+

w? —n
:P?m(ﬂ+a), o P cos(ﬂ+a0)t
M9, +C,(y, —y)+H, (¥, - ¥)=0, A ’
Mm%, +C, (X — X)+ H (X — X)=0, ©) (0% —n2f
Yo = 1,0ASING, 4 >
where M;(a), 1;(x), 1;(y) are determined from the A20® +hj, (a)2 - nj)
equations (2). 2
After introducing the notation: .(_ . y . @ COSat + th Sina)tJJr (13)
. o’ —n’
la + .
P, sin(8+a,)

26 + 226 , (10) TR A
+& . 3 +H_a|=0, hyo
— XSIna + YCOSx

where it is denoted:
. 2 2 2 2 2 2
where ¢ — a small parameter, steady state motionsl, =@ —(nx + Ng ) iy =w —(ny + n4)

according toa, X, Y, Y4, Xs are sought with the help The condition of periodicity ofz; on the basis of
of power series with respect ta, for example gquation (10)is:
a=0qgt+téeay+....

After introducing the notations: Zéiy + 2261, —
2z
L WL N A "ol mg - %, sin
Hy =" x = ) X — J X0 — ) _ 0 Oy + | T _
m, m, " m, A= . dt =0, (14)
t +Y,C08x,
P m , Gy H, .
PX:_s ,Lly:_s ny:_s hy:_, +Ha(lo
m, m, m, m,
hich aft ts b the followi
HyO p , C, H, which after rearrangements becomes the followirg on
hy=—2% P=— ni=—% h=-2 |
m, m, m, m A=27Zsin2a, =0, (15)
C H
nf:—y, h4 :_y, (11) Where
m,, m, 7 =
2 2
equations of zero approximation are the followimgs — 0’25(” A)

z.,
2o® + Ao’ + (16)

a, =0, a, =const,
0 0 hz( 2 n2)2 hz( 2 n2)2
+ Nl —Ng + N\l —N,

Xy + 11,2080y + N2 (X — Xeo ) +
+h (X, — X0 )+ o X, = P, cod B + ), where the sign change of Z depending @ is
. . determined by:

+ p1,2¢08ay + N2(Yy — Vi )+
Yo ’L'ly o y_(yo y4(?) Z, = a)z/lxﬂ,y(a)z - a)k21Xa)2 —a)lfz)+
+h, (Yo = Vao)+ oY = P, sin(B + ), e (o? )
X50""’153()(50_)(0)"'hs().(so_)'(o)zo’ /uxh);/;( 2 42) .
Y4o+n§(y4o_y0)+h4(y4o_S/o):O' (12) +,Uy Ky \ @ e

-(a)2 -n; Xa)z —~ né)

(17)
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a)lfl and wlfz are the roots of the following equation:
a,0* +a,0” +a,=0, (18)
Where:
a4 =—Hy + :uy'

. ( 2 2 2) ( 2 2 2)
a, = p, \ny +n; +ng )= w N +ng +ng )

2 2 A2 2 2.2
a, =—,ux(ny +n, )n5 +yy(nX +n; )n4.

Dynamical stationary positions according to the

equation (15) are:

V4

a,=0—, (19)
° 72

and the condition of stability is:

Z cos2a, > 0. (20)

As follows from the equation (17¥¢ according

to »? may change sign at:

w?=n?+nZ,  wl=n’+ni,  of =0,
2 2
W, = 0,, (21)
when hyg =hyo=0. If h,#0 hy=0 then those
values ? (i=1...,4) move to the sides from the values
shown in the equations (21).
Case study:

y4 = X5 = th = hyO = O) (22)

by taking into account the equations (8 - 11) thiofving
differential equations are obtained:

% +h% + pix =X
v, +hy + p>2/yi =Y (23)
Ja+H, a=L,
Where:
X, =
=—u,((2- za?)cosa - (zéi + 22¢)sinar ),
Y, = (24)
— —u1,((2- z6? )sina + (2é + 22¢)cosa }
L = —mz(zé + 226 - % sina + ¥, cosa).
In a similar way as for the previous case here:
2 \2 .
, 025m(w?A)’ sin 2a02 _
ni —a)z)z + nf, —0)2) +
+ (hxa))2 + (hya))2
where
Z =

ook, o) 0
a0} =0 I — 1, (0] — 0”2 o,

where

© VIBROMECHANIKA. JOURNAL OF VIBROENGINEERING

2 2
/uxny - luynx

Hy — /uy

Z is the square of the eigenfrequency of the case
of the exciter of vibrationa.

Stability of the dynamical stationary positions
changes when the sign of passes from positive to
negative and vice versa.

When the forces of frictior, = h, =0 then Zg

w, = (27)

changes sign whemn? passes through the valueﬁ, n§
and a)lf This is represented in Fig. 3, where stable and
unstable zones at, <ny, uy > uy for various values of

)y are shown.

o, Z ‘
7/2 Ay A
{ ‘.’.‘o i l
$! - };g 7‘ 2
| w
a&z| \lx A .F/—\
/ . l
| |
P77/ S R -
| |
PEm - ==
k w?
& |
|
A ; |
Xz —7 — T
| ; B
o ' 7 ] 2
!/l“;'c | ©
| |
! | |
M2 = =5 I ib—
| ! f N
% S N
; N
Fig. 3. Stationary zones:— stable, - - - unstable, graphical

relationships represent the square of the eigemémecyZ of the
variation ofagy about the stationary position (positive value& of

/4 . . L .
aboutE are represented in the negative direction of #vtical
axis)

At small values o¥ motions of chaotic type arise.

The forces of friction shift the transitional ptin
of Z.. If the forces of friction are small, then assuming

h)%:ghf, h)2,=gh)2,, where ¢ — a dummy small

parameter, those points are sought with the helphef

power series with respect tog, for example
2 _ .2

Wy =Ny + &0y +.... Taking into account the first two
members the followng is obtained:
2
22 2 My n,
w, =N, — hx T 21
Hy — :uy Wy — nx
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p n2 interval [-7,z| by simple modulus2z transformation
a)s = 3 + h3 - > / 7 adding or subtractingz& with appropriateé >0.
Hy —Hy @ =Ny The amplitude of oscillatiorA is decreased at
02 = w? + increasingw to preserve constant maximum kinetic energy
kn k of the exciter (at constant ):
2 2 2
+h? Ay an = D (28) mA) _ const. (29)
Hy —Hy @O — n, n,
) The following parameters were selected for
» M, nj ®, numerical simulationm = 0.1;m, = 2,1;.my =1,1;C,=1;
- hy 7 2 |- C, = 1;h,=0.05;h, = 0.05. The following parameters are
Hx = Hy o =Ny Ny used:n, ~ 0.690;n, ~ 0.954;a, ~ 0.686;a, ~ 0.976.
Figure 4 shows excellent correlation between
Numerical analysis of the basic system analytical and numerical analysis. In the region

O<w<w, the exciter is oscillating in the-axis

The set of differential equations of motion in direction (anglex is zero in the steady state regime of

Equat_|ons (22, 23) is solved using _dlrect time ma_ng motion). The transient process is illustrated igufé 5 at
techniques. The results of simulation are preserted =04

F_’omcare d|agra_m n F|_gure 4. At. every d|scr_etewajfa) The exciter orients itself in the direction whxis
time marching is continued until the transient psgEes .

: L . (angle « equal to /2 or —7/2) in the frequency range
cease down. Then the trajectories in phase plahex are h . q ics is il di
sectioned by planer = 0. It can be noted that the vibration @x < @ < @y The transient dynamics is illustrated in
exciter can rotate in a steady state regime ofanoéind Figure 6 atw = 0.7. Chaotic system response is observed in
thus plotting of ¢ could be quite complicated due to a relatively short frequency range around 0.75.
possible boundlessness af. Therefore, every value af
produced by Poincare sectioning is mapped into the

015
Fig. 4. Poincare map ah=0.1;m, = 2,1;m,=1,1;C, = 1,C, = 1;H, = 0.05;h, = 0.05;h, = 0.05; A=——
w
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vy i

—0_. 50|

Fig. 5. Transient dynamics at = 0.4

-0 . 60; -0 . 30;

*¥

Fig. 6. Transient dynamics at = 0.7

Finally it can be noted that the regions of chaotic 2 2
. . o°u ou ou
response shrink at lower values of the exciter massd EF — +¢, —pFl—+%, |=
the amplitudeA. But in that case the duration of the ox? ot ot?
transient processes is extended, which is a qutaral
result. =3 5(x-x, F(u, Jcosa,
j

3. System with distributed parameters o*v oV o%v

Ed—+¢, —+pF—=

i i ox*  7at ot?
The analyzed system is a beam, to which the

cases of the exciters of vibrations which were yred — 25()(_ X. )Fm (V< )Sinw ,
earlier are attached by hinges. i ! ' '
Differential equations of motion are:
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= (U- ): (m, + m)(xo i )+ A vibration exciter with movable mass and an
md ! additional degree of freedom (rotation) is attachedne
(z — z.o'c.z)cosa. — of the nodes of the structure (black dots in Figlirelt is
+m N . . ) , clear that every node of the structure (non-careiled)
—(Zja,- + 22,-6!]- )Slna,- corresponds to two degrees of freedom in Equatdd). (
E ( )_( )v Let's denote those two degrees of freedom correfipgn
in\Vj )= My +MV; + to node to which the exciter is attached &sorresponding
_(Z 7.5 Z)Sin to displacement in direction ofx-axis) and s
om i i aj+ (corresponding to displacement in directiory-axis).
(Z-d- +27. 4. )cosa. ' Then the external forces acting to théh ands-th
L ! ! degrees of freedom will take the following form:
Minler; )= 3é; + F (x)= X,+(2—zd2)005a—
2,6, +2,d, —(X0+Uj)8in0{j + A —(zé + 22¢)sina
+mz| + (30) _ (32)
+V; Cosa F (y)= %, + (2 za?)sina +
+H,a,, " + (2 + 2261 )cosa
, , , where F; (X ( ) and F, ( ) arer-th ands-th components
cx, = EF — o°u EJ oV =0 EJ o’V -0 a Of vector {F}. A separate differential equation describes
ox? ox® ox? the variation of angler :
x=0. Ji+H,a=

e e G o (33)

Analytical calculations are performed in the same™ —mZ(Za +22a =X, sina + X, COSO‘)'

way as for the systems with concentrated parametéies Analysis of a continuous structure coupled with a
pn discrete system is a computationally demanding Iprop
values @ =0 and o = — are obtained and this means especially when one of the systems is linear ardhen —
2 nonlinear [6]. The termsnX, and mX; are brought from

Equation (33) to the left side of Equation (31)oirer to
preserve the stability of numerical time marchirafes.
Thus the mass matrix of the elastic structure gnanted;
value m is added to the diagonal elementsrirand s
positions of the mass matrix. This augmentatiorunzéity
represents the mass increase of the node to whieh t
vibration exciter is attached.
Initially, eigenshapes and natural frequencies of
. . the elastic structure are calculated (with the eemped
[M ]{X}+[H ]{X}+[C]{X}= {F} (31) mass matrix;m = 0.1). The first four eigenshapes of a
cantilevered plate are presented in Figure 9 wiyeey
where M], [H], [C] — mass, damping and stiffness lines stand for the structure in the status of ldgium;

matrixes appropriately{)'('}, {X} {X} - global vectors of dark solid lines — for appropriate in-plane eigess.

lerati locit d displ |{1F} ¢ f Natural frequencies are printed at the bottom of
acceleration, velocity and displacemenE; — vector o appropriate eigenshapes.
external forces.

—— ../\ [~ "\

L — 1] [T
B T
1

@, =0,5201 ®,=0,9783 @, = 4,0348 ®, = 50239

that in the system transverse or longitudinal waesest.

Further analysis is performed by numerical
methods.

An in-plane elastic cantilevered plate is analyzed.
The numerical model of the system is built meshHing
continuous structure by finite element method [12].
Differential equations of motion representing ttieear
elastic structure are derived in the following form

T
T

Fig. 7. The first four eigenshapes and natural frequerafiise elastic structure
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Next, the transient processes are analyzed
different frequencies of excitation. In our moded 23 (the
degree of freedom representing the motion of thieno
which the exciter is attached in the direction tud x-axis)
and s =24 (same node in the direction of thaxis).

a&xciter is attached oscillates in the directiorx@ixis (the
same direction as the exciter itself). On the omwtrat
o = 0.65 anglea settles atzr/2, while both the node and
the exciter oscillate in the direction pfaxis. That is even
more clearly illustrated in phase plaregy in Figure 10

Transient process ab = 0.4 is presented in Figure 8; at\yhere the transient dynamics of all nodes of thecsire

w = 0.65 — in Figure 9. It can be clearly seen thatva

is plotted simultaneously.

0.4 angle o settles at 0, while the node to which the

100

%(23)

24

100

x(23)

Fig. 9. a , X, and Xg versus time — transient processzat 0.65
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(a) (b)

Fig. 10. Transient processes (traces of the nodes) intthsepplane atv = 0.4 (a) andw = 0.65 (b)

o

x|

2

0
-x |

2

! L ! (NG LT ! L ! ! -
03 035 04 0.45 05 055 08 085 07 0785 &
Fig. 11.Poincare map of the node to which the excitetteéched
Finally, Poincare map is constructed for steady Different nodes could be selected for attachment

state processes at different frequencies of eiamitat of the vibration exciter. General recommendatiouldde
(Figure 11). It can be noted that the regime ofiomoat to select such nodes, which are most sensitivexterrl
a =0 looses its stability at frequencies around 0.5eTh excitation. In our example it would be not a godda to
the process stabilizes again aroumd= 06, but already select a node near the motionlessly fixed nodes. In

T
arounda = —.

principle, the observed phenomena would be the shate
the sensitivity and the accuracy of the estimateslavbe
considerably reduced.
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Concluding remarks [3]

The effect of self-orientation is presented and
illustrated in this paper. A vibration exciter withn [4]
additional angular degree of freedom can serve as a
detector of natural frequencies. Approximate arm@dyt 5]
analysis provides insight into the principles ohdsnical
self-orientation and its applicability for the detien of
fundamental frequencies of elastic structures.
oscillating mass and the amplitude of oscillatiaristhe
exciter must be relatively low compared to the ctite
under investigation in order to provide sufficigndlccurate
estimates.

It is determined that in the systems of analyze(y]
type in the range of frequencies of harmonic exoita
from zero up to the first critical frequency, whishequal
to the partial frequency regimes of chaotic type rox
exist. In higher frequency ranges of excitationr¢hare
intervals where regimes of chaotic type exist.

Only for the frequencies which higher than
the first critical frequency regimes of chaoticégiace,
but the average positions of motion take place
about the positions calculated analytically.

The
[6]

(8]

9]
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