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Abstract. A well known chaotic mapping in symbol space shidt mapping. However, other chaotic mappingsyimizol
space exist too. The basic change is to consigeptbcess (physical or social phenomenon) not ahly set of times
which are equally spaced, say at unit time apash{fh mapping), but at a set of times which areewually spaced, say if
we cannot fixed unit time (an increasing mappirg@nce we regard, is being the flow of discrete signals wheis

restricted to value9,12,... but X;, the detection of these signals. Such interpatagimulates the observation. Our

results reveal why we can detect chaos even ouwgriment is not shared in strict equally spaced timervals. This as

every mathematical treatment leads to a rigorotigsiden of chaos. We restrict ourselves with syohbpaceA®, that is,
we consider one sided infinite sequenegsx,...,X,... with elements from a fixed set{ x, € A). Our results is proved

for such space, namely, the increasing mapping,:A” - A® is chaotic in the s&”, where
fa,(X)=Xf(0)Xf(1)Xf(2)...Xf(i)..., | EN, Xe Aw, 0< f(O) and V| VJ [| < J = f(|)< f(])] .

Keywords: alphabet, infinite and finite sequences (or wargsgfix metric, infinite symbol space, chaotic magreasing
mapping, dense orbit.

1 Introduction partially for one of the simplest classes of dyraahi
systems, functions of a single variable in symbstiace.

The Chaotic dynamics has been hailed as the thaakt g The technique of characterizing the orbit struciira
scientific revolution of the 20th century, alongtlwi dynamical system via infinite sequences of "symbdds
relativity and quantum mechanics. The explosion oknown assymbolic dynamicsSymbolic dynamics were
interest in nonlinear dynamical systems has ledth® first introduced by Emil Artin in 1924, in the studf Artin
development of new mathematics. Chaotic and randoibilliards [14].
behavior of deterministic systems is now understmobe The first exposition of symbolic dynamics as an
an inherent feature of many nonlinear systems. independent subject was given by Morse and Hedluhj]

The basic goal of the theory of dynamical systesrt®i 1938). They showed that in many circumstances such
understand the eventual or asymptotic behavior rof afinite description of the dynamics is possible. @tideas
iterative process. If the process is a discretegss such in symbolic dynamics come from the data storage and
as the iteration of a function, then the theory d®opo transmission. D.Lind and B.Marcus in 1995 have
understand the eventual behavior of the points published first general textbook [7] on symbolimdynics

X, (), f2(x),..., £ "(X),... and its applications to coding. This book and BiRhéns

as n becomes large. That is, dynamical systems ask ﬁG]’ 1998) give a good account of the history winbolic

somewhat nonmathematical sounding question: where ynamics and its applications.

. . A well known chaotic mapping in symbol space is a
points go and what do they do when they get thbreRis . .
article, we will attempt to answer this question ledst shift mapping ([5], [6], [7], [12], [13]). Howeverpther

chaotic mappings in symbol space exist too. Thdcbas
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change is to consider the process (physical oraboci |f the Wordu = UglyU,...€ A”, wherely,U;,Us,...€ A,
phenomenon) not only at a set of times which areaby - . )
spaced, say at unit time apart (a shift mappingdaba set then finite word uyuyu,..u, |s- called theprefix of u of .
of times which are not equally spaced, say if wenca lengthn+1. The empty word! is assumed to be the prefix
fixed unit time (an increasing mapping). of u of length 0.
There is a philosophy of modeling in which we study ~ Pref(u) ={4,ug, UgUy, UgUyUs, ...,UgUyUs.. Uy, ...}
idealized systems that have properties that cadldeely (that is, Pref(u) is the set of all prefixes of word).
approximated by physical systems. The experimestali
takes the view that only quantities that can be suesl
have meaning. This is a mathematical reality timateulies
what the experimentalist can see. Definition 2.1. Let uveA”. The mapping
Our results reveal why we can detect chaos even oyf. po» , o®
experiment is not shared in strict equally spadeak t w
intervals. set A if
The article is structured as follows. It starts hwit
preliminaries concerning notations and terminoltigst is
used in the paper followed by a definition of tHeaatic
mapping. The increasing mapping is considered miGe where m=max{f|a < Pref(u) N Pref(v)}
4, furthermore, it is proved that this map is cimadbome
non-chaotic mappings in the infinite symbol space a It is easy to prove that the functiahis a metric (see,
investigated in Section 6 too. for example, [10]).
Much of what many researchers consider dynamical
systems has been deliberately left out of this.t€ir 3 pefinition of chaotic mapping
example, we do not treat continuous systems oerdifitial
equationS at all. For this reason the Sectiondeisted to The term “chaos” in reference to functions wastfirs

some interpretations. used in Li and Yorke's paper “Period three imptbaos”
([8], 1975). We use the following definition of Relaney
[2]. Let (X, 0) be metric space.

Secondly we introduce id” a metricd as follows.

— R is called ametric or prefix metricin the

d(uv) = {2"", u#v,

0 u=vy,

2 Préliminaries

The section presents the notation and terminolaggdu De-f|.n|t|on 31 (2). The function f:X —>X s
in this paper. Terminology comes from combinatoes ~Cchaoticif

words (for example, [9] or [10]). a) the periodi_c points dfa.r_e dense i,
We give some notations at first: b) f is topologically transitive,
Kon={k,k+1...n}, k <nandk,ne {012,..}, c) f exhibits sensitive dependence on initial cond&ion
Z - the set of integers,Z, ={XxeZ &x>0}, At first we note

N=2, U{0}.

From now onA will denote a finitealphabet i.e., a Defirlition 32 The_ function f:X—X s
finite nonempty se{a,,a,,a,,....a,} and the elements are topologically transitiveon X if
called letters We assume thaA contains at least two X, ye Xve >OHZ€nX3n€N:
symbols. By A° we will denote the set of all finite p(x2)<e& p(f7(2),y) <e.
sequences of letters, or finiteords this set contains empty ~ Definition 3.3. The function f:X — X exhibits
word (or sequence) too. A* = A'\{1} . Aword we A"  sensitive dependence on initial conditidhs
can be written uniquely as a sequence of letters as 39 >0VXe XVe>03neN:
w=ww,. .0, With o €A, 1<i<|. The integerl is p(xy)<e& p(f"(x), £"(y)) > 6.
called thelengthof » and denote@| . The length oft is

0 Definition 3.4. Let ABc X and Ac B. ThenA'is

densein B if

An extension of the concept of finite word is obtad
VxeBVe>03ye A: p(X,y) <e.

by considering infinite sequences of symbols ovéinitée
set. One-sided (from left to right) infinite sequence or

word, or simplyinfinite word over A is any total map Devaney's definition is not the only classificatioha
w:N— A. The set A° contains all infinite words chaotic map. For example, another definition carfolb@d
A°;’ N U.A”’ " in [12]. Also mappings with only one property - sitive

dependence on initial conditions -  frequently are
considered as chaotic (see, [4]). Banks, Brookstn€a
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Davis and Stacey [1] have demonstrated that for The well known shift map is increasing mapping ie-o

continuous functions, the defining characterisbéshaos  sjded infinite symbol spac&?, in this case the generator

are topological transitivity and the density of ipdic  fynction is a positively increasing function f : N — N,

points. where f ()() =X+1.

Theorem 3.1. Let A be an infinite subset of metric Let K be a set. The iterations of mapping
space X and f:A—A to be continuous. Iff is 9:K— K we define inductively:

topologically transitive o and the periodic points 6fire (i) g% =1 (identical mapping);
dense iMA, thenf is chaotic orA. (ii) gn+l —gg".

It means that we can not check up exhibits semsitiv
dependence on initial conditions of mapping. Thisperty
follows from others. function, then vneZ, f" is a positively increasing

See also [5] chapter 11. function andvi vj an: £"(i) > j.

Theorem 3.2. Let A be a subset of a metric spacand ~ Proof. We make the proof by induction on number of
f:A— A. If the periodic points of are dense i and iterationsn. If n = 1, therf is positively increasing function

there is a point whose orbit under iteratiorf & dense in Py conditions of Definition 4.2. Now we assume thalt is
the setA, thentf is topologically transitive oA. positively increasing functionf " : N — N and fulfils the

conditions0< f"(0) and Vivj[i < j= f"(i)< f"(j)].

We must show thatf " is positively increasing function
Corollary 3.1. Continuous functionf is chaotic in  {5q.
infinite metric spac«, if following conditions are met:
1) the periodic points of are dense in the s¥t
2) either there exists a point orbit of which by map  then by second assumptiéi0) < f(f"(0)) = f "(0).
fis dense in the s&t eitherf is topologically transitive
in the seiX.

Lemma 4.1. If f:N—>N is a positively increasing

Therefore we conclude

Sinced < f"(0) (first inductional assumption)

Sincef is positively increasing function thehi< f "(0) .

If i < j, then by inductional assumption
4 Increasing mapping f"(@i) < f"(j). Sincef is positively increasing function
thenf (f"(@i)) = f ") < f(£"(j)) = f"(j), and

Let fw(X) = Xf(O)Xf(1)Xf(2)...Xf(i)...,i EN, Xe Aw . fn+]_

therefore we have proved thatne?Z, is a
positively increasing function.
Now we will prove the second part of Lemma. At

first we notice that:

In this case the functior is called the generator
functionof mappingf,, .

Definition 4.1. A function f:N—>N is called VieN: i< f().
positively increasing functioif The casei = 0 follows from definition of positively
0<f(@) and ViVvjli<j= f(i)< f())] increasing function. We assume inductively thatjiraity

i < f(i) is true for every fixedi e N and prove that this

inequality is true fori+1 as well. Sincé<i+1, by
second condition of positively increasing functian
condition of inequality is fulfilledf (i) < f (i +1) . Since by

Example 4.1. For example, let's take a look atinductional —assumption i< f(i) and f(i)eN

The mapping f,:A” - A” is called increasing
mappingif its generator functionf : N — N is positively
increasing.

positively increasing functiotwxe N: f(x)=3x+1. It is theni+1< f(i). Summary it means that
clear that every positively increasing functionirisreasing 1+1< f(i) < f(i+1).

function in ordinary sense but not conversely. The Sincef is positively increasing function then
functionf (x) =3x,xe N, is increasing function in

ordinary sense. Sincé= f(0) the functionf is not i< f@)<f(f@)="f2@)<..

positively increasing function. o< £ < F(F™20) = £7().

If we consider f (x) =3x+1 as generator function, then
the corresponding generated mapping is increasing,
is f, : A” > A”, where

Vs=55S,...€ A 1 f(S) = §,5457..S5i,1.-»1 € N.

We know that f(i) e N, therefore f"(i)>i+n. We
conclude ifn>1 andn> j—1, then f"(i) > j.
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Definition 4.2. The mappingg : K — K has adense orbit
in the setK if there exist a pointx e K such that the set
{gk (ke N} dense in the sé.

Theorem 4.1. For increasing mapping f, : A” —> A?

exists a dense orbit in the sat’.

Proof. Let #:N — A" is a freely chosen bijection.
(For example, iA ={0,1} and

A" = {0100,011011,000001010..} , then
p0)=0,0)=15(2) =007 =0154) =10
B®)=115(6)=000...

We define inductively a sequence of words
UgsUp,...,Up,...€ A (1)
such that

Viflu [<|uig [Au e Pref(u )]
We also define a sequence of integers

Ko Kqs... K

Kipyse e
The definition is as follows:
1) We choosal, = £(0) andk, =0.

2) Let aeA BQO)= PP Pu,
Up = A(0) =u[OJu[l]...u[sy] , where all gy, ulj]
letters of alphabet. By Lemma 4.13k, f k 0 >sy.

and

are

The word u; = uy[O]uy[1]...uy[s;], wheres, = f fa (¥
is defined following

ujl, if j €0,sy;
Bros i j=f%0);
. . if j=f;
ul[ J] — ﬂll J ( )
B, i i=1R0)=s;
a, other cases
3) We assume that  Bnofu .- B, and

Uy_g = ulOlufl]...u[s, 4], where all 5, u[j] are letters
of alphabetA. By Lemma 4.13k, f“(©0)>s,,. We
u, =u,[0Ju,[]...u,[s,].
s, =f%(,), following

define the word where

ujl, if j€0,s,4;
Bror  f j="f%(0);
. o if j=fh@;
un[]] — ﬂnl J ()
Bu,, i j=1() =5,
a, other cases

4) Since Viu; € Pref(u,;) and lim |y |[= then
1—>0

there exists an infinite word

ue A® such thatu = limu .

|—00
Let £>0.
Then there existsn such that2™™ <& . We assume that

xe A” andvis a prefix of wordx of lengthm. Then there
exists n such that g(n)=v. By construction of the

sequence (1)

The orbit of wordu is dense in the sefA®.

B(n) e Pref(f* (u)),
therefore distanced(x, f " (u) <2 ™ <.

Remark.If the setA is countable, then A* is countable
too, therefore the proof of Theorem 4.1 does nangk if
the setA is countable.

Theorem 4.2. The periodic point set of increasing
mapping f, : A — A? is dense in the seA”.

Proof. The proof is similar as for the Theorem 4.1. Let
&> 0. Then there exists such that2™™ < & . We assume
that xe A? andv is a prefix of wordx of lengthm. We

define inductively sequence of words
Ug,Uy,...,Uy,,... such that

Viflu [ <|uig [Au e Pref(u )]
1) We choosay, =v.
2) Let s = m - 1. We assume that ac A and
Uy = u[OJu[l]...u[s], where allu[j] are letters of the

alphabetA. By Lemma 4.1 3k f K (0) > s. We define the

word  u; =w[0Ju[1]...uyfs], where s =f k(s) ,
following
ufjl, i je0s
ufo], if j=1%0);
: 1, if j=fX;
wj-lum it =t
usl, it j=f9)=s;
a, other cases

Since f*(0)>s then % (0)> f¥(s)=s,.

3) We assume that u,; =u[0Jul]...u[s,;], where
f©) > f("PX(s)=s,, and all u,,[j]are letters of
alphabetA. The word u, =u,[O]u,[]...u,[s,], where

s, = f¥(s,4) is defined following

uf j1, if j€0,s,4;
u[o], if j=f"%0);
. 1], if j = f"™@);
u ] = u[] [ j @
Usyal, i j=1"(s,4) =5
a, other cases
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Since f©O) > V(g =5, , then

f (DK Q) > ™ (s) = FX(s,4)=s,.

4) Since Vi u; € Pref(u,;) and lim |u; |=c0 then there
1—>0

exists an infinite wordu e A” such thatu=limu; .

I—0

According to construction ofu, it follows thatd(u; X)
<2™M<¢ and fk(u) = u. We have proved that is a
periodic point of mapping f, such that the distance
betweeru andx is less thare.

Theorem 4.3. The increasing mappingf, : A” - A” is

continuous in the setA” .

Proof. We fix word ue A” ande > 0. We need to prove
that there iss > 0 such that whenevald(u; v) <d, then

d(f,(u),f,(v)<e.

We chooseam such that2™™ < ¢ 2 and assume that<€d <
2-fM+1 \wheref : N — N is corresponding positively
increasing function of f, . If d(u; v) <d, then by
definition of prefix metric follows thatu; =v;
i=0,1,...,f(m).

From definition of increasing mapping

fw(u) =Uf(0)Uf(l) ...Uf(m)

for all

fw(V) = Vf (O)Vf (l) ‘--Vf(m)
and Ug gy =V, 1=0L...,m therefore

d(f,,(u), f,(v) <27 ™D <™ g

Theorem 4.4. The increasing mapping,, : A —> A? is

chaotic in the setA”.

Proof. The spaceA® is infinite space. Since the increasing

mapping f,: A” - A” is continuous (Theorem 4.3),

there exists a dense orbit in the &t (Theorem 4.1) and

its periodic point set is dense in the g&t (Theorem 4.2)
then by Corollary 3.1 follows that increasing magpi

f, i A” - A”is chaotic in the setA”.

5 Interpretations

() Let
X(tg), X(ty), ..., x(t,), .. (2)

be the flow of discrete signals. Suppose that wee hhe
experimentally observed subsequence

X(To) X(T),--., X(Tq), .. ©)

If To=t,T, =t5,...,T, =ty.4,... we have the shift map.
Notice if we have the infinite wordx = XgX;...X, ...
instead of sequence (2), then we have respectitrely
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infinite word y=yyy;...Y,... instead of (3). Here
vt y; = X;_;. Hence, we obtain the shift mép) =t + 1,
namely,y = f,,(X) = Xt o)Xt @ X 2) -+ Xt (n) -

We do not claim the functiofft) =t + 1 is chaotic on the

real line R but we had proved that this function aas
generator creates the chaotic mép in the symbol space

A?. We had proved something more, namely, every
positively increasing functiog as a generator creates the
chaotic mapg,, in the symbol spacé”. In other words,

if we had detected in our experiment only subsecgien
x(t), x(t3), ..., X(tyq_1),... €even then we can reveal chaotic

behavior.
y

14+

Ll

1
3

Fig. 1 y=2z mod 1.

(i) Now we turn our attention to the interval, [0] of the
real line R. Let us consider a dynamical systenmddfby
the map

y=2xmod 1. (4)
The key step is to recognize that because the sibihe
graph (Fig. 1) is 2 everywhere, the action of §irivial if
the coordinatex e [0]1] are represented in the base 2. Let
x have the binary expansian= 0.Xg%; ... X, ...
with Vvt x, €{01} . It is easy to see that the next iterate
will be y = (Xg.% X5 ... X, ...) modl=0.xX, ... X, ... Thus,
the base 2 expansion gfis obtained by dropping the
leading digit in the expansion @f This map is chaotic in
the interval [01] (see, e.g., [3]). Notice the map

h: {01} — [0] : XpXq ... Xp ... > 0% X5 ... X, ...
is the topological semi-conjugacy (see, e.g., [1&in the
shift map to the action of (4). Similarly we cantah the
chaotic map in the interval [A] from every increasing

mapping f, : A - A”. For example, let the positively
increasing functiona: N —> N

a(i):{”l

i+2

i {01},
i>2
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Then a,,: {01}“ —{01}“ is the increasing mapping, and Proof. We prove the opposite of topological transitivity:

therefore it is chaotic in the s€01}“ . Now we can obtain

the chaotic function in the interval ,[@], namely, the
function

4x, 0sx<i,
6
sl L3
16 16

1 3 5
AX——, —<X<—,
2 16 16

3 5 7
4x——, —< —,
4 16 16
4x-1, lSX<E,
16 16
Es(X) = 4x -2, ﬁsx<3,
16 16
4X—g, ig E"
16 16
5 11 13
AX——, —<X<—,
2 16 16
w13 15
4 16 16
4x-3, 1—5£x<l

16
0, x=1

The graph of the functiorE;(x) is sketched in Fig. 2.

.

Fig. 2 Fa(z).

1
16

6 Non-chaotic mappings

At first we prove one result about case that we hat
considered in section 4.

Theorem 6.1. If generator function f of mapping
f, A® > A” is such that (D) = Q then the generated
mapping f,
A?.

IxIyIe >0vzvne N (d(x,2) =& v d(f)(2),y)>¢).
We assume thatx = XgX%; ... X,... and y=ygy;...Y,...

are chosen so thax, # y, and ¢ = 1. Letze A” be

arbitrary. Two cases are possible:

1) z, # X, then by definition of prefix metrid(z, ¥ =
20 =1=¢g

2) if zy =Xy, then we can not state thd{z, ¥ > ¢ , but

we havevne N f'(2) = Zen gy Ziny Zing -

In this iteration z =7y, but zy = x5 # y,, therefore

£7(0)
d(f)(2,y)=2° =1=s.

Corollary 6.1. If generator function f of mapping
f,:A” - A” is such that(D) = O then the generated

mapping f,, is not chaotic in the seA”.

Similar as in Theorem 5.1 it is easy to show tleategated
mapping f is not topologically transitive (also not

w

chaotic) in the set A® if for corresponding generator
function Jie N f(i)=i.

At second we prove one broader result for verydarigss
of functions that

is not chaotic.

Theorem 6.2. If generator function f N — N of mapping
f, AY > A” is not one-to-one function, then the

mapping f, is not topologically transitive in the sét”.

Proof. We assume that generator functibn N — N of
mapping f,:A” - A” is not one-to-one, then there
exist two different nhumberk and m (k < m) such that
f(k)=f(m).
We
Y=YoY1---Vi--
Xm # Y- We assume that =2™". We choosez e A” .
If d(z, %> &=2"", then the proof is completed. If
d(z,x)<e =2"", then from definition of prefix metric
follows that VieOm z,=%. This means that
&=2"". We have

and
and

assume that X = XpXy...X ...

are chosen so thaty, =y,

Zy = Xm # Y, therefore d(z, y) >
assumed thaf(k) = f(m) then

f,(2)= ZingyZengy 2oy Zngmy

and z;y = Zg(m- BUt yy # Yy, therefore

1) Zf(k) = Zf(m) * yk = d(fw(Z),y) > 2_k > 2_m or

is not topologically transitive in the set 2) Zigy = Zim # Ym = d(f,(2,y)>2"".
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Similar for everyn in iteration f.'(z) the k-th andm-th
symbols are equal and those are different frgmor y,,,

therefore d(f,(2),y)>2™".

Corollary 6.2. If generator function : N — N of
mapping f,: A” — A” is not one-to-one function, then
the mappingf, is not chaotic.

Corollary 6.3.1f f,:A° — A® is chaotic map in the set

A“, then generated function: N — N of mapping f,
is one-to-one.

For example, the increasing functiofi, : A — A” is a
special case for mapping with one-to-one generat
function. But we remark that there exist non-chaoti
mappings with one-to-one generator functions.
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