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Abstract. The present paper is aimed at developing methods of damping (decreasing) the amplitudes of random 
mechanical vibrations of moving equipment by using the approach suggested by the authors. In the description of 
random vibrations, the theory of random processes is applied, the energy dissipation of mechanisms is determined. 
Internal and constructional losses are analyzed. The role of viscosity at the propagation of wave energy in certain 
systems is specified. A level of random vibrations is evaluated. A concrete sample illustrating the role of constructive 
absorption of energy is analyzed. The paper presents calculation methods, which may be easily applied for the creation 
of a computer programme.  
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INTRODUCTION 
 

At present, electronic equipment installed in 
moving objects (e.g. vehicles, etc.) are being produced 
and widely used. Therefore, the fixing of individual 
elements of sensing devices to the body of mechanisms 
strongly affects their performance and service life. 

For analysis of random vibrations of electronic 
apparatus and in solving other technical problems, where 
the theory of random processes is applied, of key 
importance is the installation of the mechanisms of 
energy dissipation. It is known that heat conductivity 
plays an extremely important role during vibrations of the 
elements of the type of bars and plates. [1, 2] 

In the complex mechanical systems, alongside 
inner losses in the material of the construction parts, the 
so-called constructional losses are of special importance. 
Any part of the construction interacts with other parts 
through the greater or lesser number of contacts, 
receiving or releasing the energy of vibrations. It is that 
interaction, characteristic of the complex systems, which 
plays an important role in random vibrations and leads to 
the effect of constructional friction. On the example of 
random vibrations of the liquid-metal contact, the 
classical case of viscous dissipation is examined [3, 4]. 

Since those issues are quite extensive and are 
related to special mechanical problems, we shall restrict 
ourselves to giving the typical examples, illustrating the 
role of the most important mechanisms of dissipation at 
random vibrations of electronic apparatus. 

For description of inner losses in the substance, 
certain approaches exist in the mechanics. Most often the  
components, reflecting dissipation, are introduced into 
the equation. This method may be best traced on the 
example of Navier-Stokes equations, used for viscous 
liquid small bodies, which are employed in the capacity 
of the working substance in the devices.  

Any excitation of a sufficiently small amount of 
viscous liquid is described by the system of linearized 
differential equations [5]. 

By applying a computer program, a vibration 
model with the smallest number of free vibrations may be 
constructed by the considered statistical theory method 
and provide for the effective damping of constructional 
vibrations. 

In developing statistical models of mechanical 
vibrations, small dimensions of the vibrating system 
compared to the wave length are taken into consideration. 
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RANDOM VIBRATIONS ON THE BASIS OF 
ENERGY DISSIPATION OF NATURAL 
MECHANISMS 
 

In the case of low viscosity in the capillary tube, 
the solution of a dispersion equation for a symmetrical 

wave may be searched in the form of1 nk h nπ δ= + , 

where nδ  is a small correction, conditioned by viscosity. 

In the presence of the layer of liquid, laying on the 
solid base and having the free upper surface, the 
components of the tensor of tensions yyσ  and yxσ  are 

turning into zero: 
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Fig. 1. The calculation diagram for the capillary with the natural 

viscosity of the medium 
 
 

The presented method of calculation may be used 
in the case when it is necessary to take into account the 
losses, resulting from the heat conductivity. The full 
system of linear equations has the form:  
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The appearance of new solutions in a wave 
equation means the existence of such waves in the real 
liquid, the existence of which is connected with thermal 
processes, accompanying the compression and rarefaction 
of the medium. That type of waves is realized only close 
to the boundary of the wave field, as they turn to be the 
quickly damped. Correspondingly, the number of 
boundary conditions increases. Setting of the heat regime 

onto the edges of the wave field is an additional 
condition, necessary for solving the system. 

The solutions found may be used for investigating 
the physical properties of wave fields in the viscous 
media of capillary tubes – the sensitive elements of the 
sensors and devices of automation. It is important, for 
example, to define the role of viscosity during the 
propagation of wave energy in the indicated systems. 
From our investigations [6] it is well known that in the 
waveguide with solid walls at low frequencies the so-
called zero normal wave, which is capable of carrying 
energy along the waveguide to any big distances, may 
propagate. It is shown below that at the accounting of 
viscosity, energy propagation deep into the capillary tube 
of small section is impossible, as the corresponding 
constant of wave propagation will be the complex 
number. Let’s go back to the problem of propagation of a 
symmetrical wave in the waveguide with the solid 
surface, studied in the works [6]. As it was shown, the 
constant f wave propagation k must satisfy the dispersion 
equation 
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Since we speak of a zero wave, having almost the 
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instead of energy propagation we observe the extinction 
of excitations close to the entrance of the capillary tube. 
This result is also obtained for the capillary tube of round 
form. The examples show that in each concrete case, the 
choice of the design diagram of the phenomenon requires 
a careful approach and justification. 

Inner losses in the material of the solid bodies are 
also conditioned by friction and heat conductivity. For 
description of internal friction in the material instead of 
Hooke’s law [7] the more complex correlation of the kind 
is used 
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The significant part of inner losses in the material 

of the solid body is related to heat conductivity. For 
description of those losses, the temperature component in 
introduced into Hooke’s law, i.e. 
 

σ αδ µ λδ= − + ∈ + ∈2 ,ik ik ik ik kkKT  
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where α is coefficient of linear expansion; K is the 
module of comprehensive compression. 
 The appearance of the unknown variable – 
temperature T must be accompanied by the corresponding 
additional equation of heat conductivity: 
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Here α, pc , vc , k – heat parameters of the material 

(coefficient of temperature expansion, heat capacity at 
constant pressure and volume and correspondingly the 
coefficient of heat conductivity).  

At the boundary of the body under deformation, 
alongside the ordinary boundary conditions for dynamic 
variables, the additional boundary conditions for 
temperature should be set. 

For equipment and the parts of apparatus, it is 
interesting to analyse the preset problem of 
thermoelasticity in the case of longitudinal and flexural 
waves. At longitudinal vibrations we get the following 
system: 
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Here introduced is the designation  
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The more complex discussions are necessary for 

introduction of the system in the case of flexural 
vibrations. The equations of elasticity with the 
temperature component are reduced to the form: 
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where temperature moment MT is determined by the drop 
in temperature:  
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While calculating the divergence of displacement 

vector at the bending with the help of hypothesis of plane 
sections, we reduce the additional equation (of heat 
conductivity) to the form: 
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By multiplying both parts of the equation by zαE and 
integrating by thickness, we receive the following 
correlation: 
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The second member in this equation is received by 
integrating in parts of the derivative from temperature. 

The second component in the right part of that 
equation usually exceeds significantly the first one; 
therefore the connected system of equation of heat 
conductivity is reduced to the usual equation of bending 
with the correction on the losses: 
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In the work [3] the following coefficients of temporary 
damping of vibrations δ  are given for longitudinal 
waves:  
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and for flexural waves 
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Of special importance are mechanisms of energy 

dissipation, essential for non-linear processes. The energy 
consumption for the change in the structure of the 
medium (in particular, for the accumulation of damages 
in the medium [4], dissipative mechanisms, 
accompanying the phenomena of the blow [3], are 
reflected in the most essential way at the level of the 
random vibrations.  

From the work performed, it is necessary to note 
that non-linear vibrations in their turn are accompanied 
by the transformation of frequencies, since the wave 
energy of high-frequency vibrations may be absorbed 
more intensively at the expense of aforementioned linear 
mechanisms. 

 
RANDOM VIBRATIONS OF THE ELASTIC 
PANEL AT RADIATION-RELATED ENERGY 
LOSSES 
 

For engineering supplements, the results of the 
approximated Rayleigh theory of radiation [8] may be 
used. According to that theory, the loading impedance for 
the body, vibrating in the screen, makes the value: 
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Thus, it is possible to produce the following 
equation of the movement of the plate, loaded with the 
medium: 
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That equation is supplemented with the ordinary 

boundary conditions, reflecting the excitation of the 
elastic element from the body of the article, 
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The solution of the boundary condition, 

reflecting the frequency properties of the system, may be 
written in the form 
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where the wave number of flexural vibrations k is 
determined now by the correlation 
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It is easy to note that the effect of the medium is 
expressed by the appearance of the connected mass (at 
the expense of the component 0,82ρ0R) and, what is most 
important for the random vibrations, to the dissipation, 
which is expressed by the complex value of the wave 
number k. Now, with quite full justification it is possible 
to pass over to the problem of random stationary 
vibrations of the panel, radiating the energy, and to record 
the spectrum of vibrations in the form 
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However, for the quite extended body elements of 
construction, the character of energy dissipation changes 
essentially due to radiation. Let, for example, the plate 
make vibrations according to the 

law ω κ−= 0 sini t
nu u e x , where κn  – wave number. On 

both sides from the plate, the plane sound waves will 
emerge, for the determination of the amplitudes of which 
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Energy radiation means that the amplitude of free 

vibrations u0 will decay slowly. The energy of the plate 
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here it follows that ostensible part of the wave number, 
necessary for the evaluation of the level of random 
vibrations, will make / /nc kd = d w , where c is the 

velocity of wave propagation of the corresponding type in 
the plate. At high frequencies it is possible to consider 

that  
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A concrete example, illustrating the role of 
constructional absorption of energy, is considered. Linear 
oscillatory models, constructions are given, i.e. mass m 
on the elastic spring k gets excited from the wall, onto 
which the spring is fixed (see Figure 2). Energy, stored 
up in such oscillatory circuit, will radiate partly in the 
form of flexural waves into the plate. It is shown that 
dissipating links, which may be calculated, will appear in 
the oscillatory circuit. In order to find a dissipating 
member in the equation of motion, the excitation of the 
plate under the action of the concentrated force    

tieF ω−
0 , applied at the beginning of coordinates, is 

studied. 
 
 

 
Fig. 2. Estimated model of constructional damping at the 

account of excitation of flexural waves in the plate 
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For obtaining an answer to the set task we search 
for solution of an equation of the axiosymmetrical 
vibrations of the plate  
 

 
ω ω∂ ∂ ∂ ∂ ∂ 
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which is limited at zero and has the specificity of such 
order that  
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This condition physically means that the sum of the 
dissecting forces in the plate on the circuit of the circle, 
laid around the concentrated force, equals that force, if 
the radius of the circuit is sufficiently small. The solution 
of such a type is called the Green’s function [3]. 

Alongside the indicated condition, the Green’s 
function must satisfy the conditions at infinity with r → 
∞, i.e. conditions of the absence of the sources at infinity. 
For deriving of the necessary solution, we shall write the 
equation of the plate movement for the case of the 
established harmonious vibrations with frequency ω  
 

 
ω

ω
∂ ∂ ∂ ∂

− =
∂ ∂ ∂ ∂

41 1
0,r r k

r r r r r r
 (8) 

 

where  ω=4 2 / .k ph D  

Of the four independent solutions, only two 
Hankel’s functions of the first class from the real and 
purely putative arguments satisfy the conditions at 
infinity. 
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Since at r → 0 both those functions have the logarithmic 
specificity, their difference should be taken as the 
solution. That solution will be restricted 
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The constant of integration A we shall find from the 
condition (7). Performing the operations of differentiation 
and making use of (7), we shall obtain 
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It is possible to write the solution obtained in the 
following form: 
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In this case the equation of the movement of the mass, 
adjacent to the plate, will be  
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2
2
0 02

8 hDe w dw
w w

m dtdt
.  (12) 

 
This equation equivalent to the equation of the 

movement of the oscillator with viscous friction is 
indicated in the work, i.e. all statistical characteristics of 
which have already been found [1]. At the spectral 
approach we have the following formula for spectral 
density of the intensity of the fixed vibrations: 
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Fig. 3. The resonant characteristic of the linear vibratory model 

at different values of the decrement of the constructional 
dissipation 

 
 

It is interesting that the decrement of attenuation 
in the system is defined by the fully elastic properties of 
the plate. Fig. 3. presents the relation characterizing the 
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transmission qualities of the system at different meanings 

of the coefficient 
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coinciding with the logarithmic decrement of attenuation. 
For stationary vibrations it is also possible to define the 
function of correlation for the response of the linear 
oscillator 
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Non-stationary vibrations may be studied in the 
closed manner only for the case of delta-correlative 
process of excitation 
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In this case as shown in the Markov's processes [5], we 
obtain the following statistical characteristics for the 
intensity of vibrations [3]: 
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where ( )
1

2 2 2
0 / 4ω ω µ= − , which exhausts the whole of 

statistics for the normal process. 

 
MODELS OF EVALUATION OF DISSIPATION COEFFICIENTS IN  THE APPARATUS PARTS  

 

Apparatus elements 
Mechanical model, temporary 

damping factor 
The corresponding complex 

Young’s modulus E for calculation 
of structures 

 
1.1.  
Parts of electronic devices flexurally 
vibrating bar  

h thickness, 
a thermal diffusivity, 
ω  angular (circular) frequency 
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1.3.  
Molten metal element 
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β  coefficient of surface tension, 

R drop radius 
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1.4. Constructional losses in the 
chassis 
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CONCLUSIONS 
 
1. It has been established that apart of the internal losses 
in the mechanical system shown, constructional losses are 
of special importance. 
2. It was established that the interaction force of the fixed 
mass with the plate permits one to decide about the 
energy absorption (dissipation) of the construction. 
3. By means of Green’s function, it is established that the 
sum of the forces released in the plate is equal to the 
concentrated force in the circuit, if that circuit is 
sufficiently small. 
4. For spectral approach, a formula is deduced for 
determination of spectral density. 
5. It is shown that decrement of attenuation is determined 
by the elastic properties of the plate. 
6. For revealing the intensity of vibration, the statistical 
characteristic, which for the investigated process exhausts 
all statistics, is obtained 
7. With the help of a computer program it is possible to 
create a vibration model of elements, which will give the 
opportunity with the least number of free vibrations to 
determine the efficient damping of vibrations of 
equipment construction.  
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