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Abstract. The dynamics of fluid in the elements of a pipbabis investigated in this paper. Plane vibratiohsdeal
compressible fluid are analyzed by taking accobnetdonstraint of non-rotation by means of the pggmakthod. Reduced
order numerical integration of the penalty terrpésformed. Graphical representation of rotationghatpoints of reduced
integration is proposed for validation of the cédted eigenmodes.

Fluid flow through different cross sections of narales in metal sheets separating different companmts of a
pipe robot is important in the design of a pipeatlCalculation of the mass flow rate is necessargn performing the
comparison of different cross-sections. A two-disienal model performing the discretization of thess-section is used
for the solution of this problem.

The obtained results are used in the process ajrde$a pipe robot.

Keywords: pipe robot, ideal compressible fluid, eigenmodmaity method, reduced integration, finite elemefhusd
flow, cross sectiamass flow rate.

Introduction paper presents the continuation of investigatiaesented
in the previous papers.
In this paper the dynamics of fluid in the elements The obtained results are used in the process of
of a pipe robot is investigated. design of the elements of a pipe robot.

The plane vibrations of ideal compressible fluid
are analyzed by using the displacement formuldgtlor?]  Finite element model of the element of a pipe robot
and taking into account the constraint of non-ifotaty

means of the penalty method [3, 4]. Reduced order The nodal variables for the analyzed two

numerical integration of the penalty term is perfed [3, dimensional problem of vibrations of the fluid aitee

4]. displacementas and v in the directionsx andy of the
Graphical representation of rotations at the point®rthogonal Cartesian system of coordinates.

of reduced order numerical integration is propo$ed It is assumed that the angular frequency of

validation of the calculated eigenmodes. excitation coincides with the eigenfrequency of the

Fluid flow through different cross sections of appropriate eigenmode and thus the eigenproblem is
nano-holes in metal sheets separating differernalyzed. For the calculation of the eigenmodes the
compartments of a pipe robot is important in theigie of expressions for the mass and stiffness matrices are
a pipe robot. Calculation of the mass flow ratedsessary necessary.

when performing the comparison of different cross- The mass matrix of the fluid is:
sections. Related problems of analysis of fluidnflare

presented in [5, 6, 7]. A two-dimensional model _ T

performing the discretization of the cross-secti®rused [M] J-[N] p[N]dXdy, (1)

for the solution of this problem [5].

The pipe robots of various types and theirwhere p is the density of the fluid in the status of
dynamical motions as well as the motions of thlements  equilibrium, N] is the matrix of the shape functions
are investigated and described in [8] and otheema@his determined by the following relationship:

209

© VIBROMECHANIKA. JOURNAL OF VIBROENGINEERING JUNE 2008, VOLUME 10, ISSUE 2, ISSN1392-8716



361.INVESTIGATION OF DYNAMICS OF FLUID IN THE ELEMENTS @ A PIPE ROBOT L. RAGULSKIS!, K. RAGULSKIS?, A. BuBULIS®, B. SPRUOGIE, V. MISTINAS®, A. MATULIAUSKAS®

(@)

b} Il

where {0} is the vector of nodal displacements. Explicitly:

[N]{ } )

where N; are the shape functions of the analyzed finit
element.
The stiffness matrix of the fluid is:

N, 0 N, O
0O N, 0 N,

[K]

- [[BT e [Bloxay + [[B] A[Blbay,

wherec is the speed of sound in the fluidjs the penalty
parameter for the constraint of non-rotation. Ttegrir [B]
relating the volumetric strain with the displacemsers
defined from:

e

Results of analysis of vibrations of the fluid in e
element of a pipe robot

The problem in the rectangular domain is
analyzed. The length of the analyzed structuregisaketo
twice of its dimension in the direction of tlyeaxis. The
displacements normal to the boundaries are assemaal
to zero.

As it is assumed that the angular frequency of
excitation coincides with the eigenfrequency of the
appropriate eigenmode and the excitation is ndtognal
to the eigenmode, the excitation is not specifigglieitly
and vibrations according to the eigenmode are agndly

The rotations for the eigenmode are calculated at
the points of reduced integration order and repiteskin a
circle around this point as a black angle from plsitive
direction of thex axis. This angle is equal to the rotation
multiplied by a large constant. This constant iesgn for
each eigenmode in order to achieve visible reptaten
of the results.

The first eigenmode is presented in Fig. 1, the
second eigenmode in Fig. 2, ,.the tenth eigenmode in
Fig. 10. The second and the third eigenmodes aitphau
and also the eighth and the ninth eigenmodes altigptau

ou ov
—+—=[BJs} (5)
oX oy
© [C] (€] G © (€] ] [cH Nc] [cH ECH Cch IcH Kcl [ch Kc)
EXpllCltly c] e | e c|ele|ele|ele
€] €] €] €] o6 [cARcHCcac]
8N1 8N1 aNZ aNZ < ec|leo | e|le|e|le|ecle|e [
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ax ay ax ay €] €] €] €] €] [cAc] G|e ole |e|e|ele|e
€] €] €] €] €] G |6 G|6 Gle|o|e|ele|e
The matrix [B] is used to characterize the rotation and is elejelefje]elelefe]ele]e|efoe|e
defined from: Fig. 1. The first eigenmode
@—?:[é]{é‘} (7) e |e|le|cecle|ele|ole|e|le|c|le|ele | o
X
ay (€] [cA c] [CANC] [CARCH NCAICHNCANC] G| e G| 06 €]
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(€] 6|06 €] [calc) €] €] €] €]
g ] [ © €] o 1) [cANC] [cHRC) €] (€] ©
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a ay OX ay OX ’ Fig. 2. The second eigenmode
The calculation of the second integral of the s&fs oleJefe]e[e]e[e[e]e EHEE
matrix is performed using numerical integrationerdf clsle|ois|glglciElaslola] 8]s | @
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2 ' Fig. 3. The third eigenmode
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Fig. 4. The fourth eigenmode
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Fig. 8. The eighth eigenmode
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Fig. 9. The ninth eigenmode
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Figure 10.The tenth eigenmode
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This graphical representation indicates the quality
of satisfaction of the constraint of non-rotatioor fthe
eigenmode over the whole structure and thus sdovehe
validation of the results of calculations. It shibble noted
that for this problem in several eigenmodes thisrao
rotational motion because of the displacementsligata
the axes of coordinates.

Analysis of mass flow rate between different elemés
of a pipe robot

Cartesian coordinate system is used with zhe
axis parallel to the axis of the tube. The crosdise of
the tube does not vary with tlzecoordinate. The velocity
of fluid flow in the direction of the axis is the function of

the coordinates of the cross-section.= W(X, y). The

components of velocity in the plane of the crossiea are
equal to zero.

The stresses arer, = o, =0, =—[,

y z
o,=0 0,=u—
xy ' Yy
oy
pressure and is the viscosity of the fluid.
The equilibrium equation in the direction of the
axis has the form:

oW
y O, = —, wherepis the
OX

ﬁ[a_wja ow)_dp
ox\"ox ) oy M ey ) ez

wherep is the density of the fluidy is the acceleration of

= P9 =0, (10)

0
gravity, 8_p is the gradient of pressure in the direction of
Z

thez axis and it is assumed constant.
The boundary condition at the wall has the form:

ow
— U— =W, (11)
on

wheren is the outward normal to the boundary of the cross
section of the flowg is the coefficient of slippage between
the fluid and the surface of the tube.

The stiffness matrix has the form:

[K]=[[B] #[Blxdy+ [[M] a[M]ds,  (2)
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Radius of the cross section is 10 mm. The obtamads

flow rate% = 254.869.
S

Conclusions

The dynamics of a fluid in the element of a pipe
robot is investigated.

Vibrations of ideal compressible fluid are
analyzed by taking into account the constraint ofi-n
rotation by the penalty method using reduced order
numerical integration of the penalty term.

Graphical representation of rotations at the points
of reduced order numerical integration is propo$ed
validation of the calculated eigenmodes. This gicgh
representation shows the quality of satisfaction tod
constraint of non-rotation over the whole structure

The mass flow rate of the fluid through various
cross-sections is determined. This is importantthe
design of separating elements between the different
compartments of a pipe robot.

The obtained results are used in the process of
design of the elements of a pipe robot.
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