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Abstract. The paper focuses on the control problem of a tentacle robot that performs the coil function of grasping. First, 
the dynamic model of a hyperredundant arm with continuum elements produced by flexible composite materials in 
conjunction with active-controllable electro-rheological fluids is analyzed. Secondly, both problems, i.e. the position 
control and the force control are approached. The difficulties determined by the complexity of the non-linear integral-
differential equations are avoided by using a basic energy relationship of this system. Energy-based control laws are 
introduced for the position control problem. A force control method is proposed, namely the DSMC method in which the 
evolution of the system on the switching line by the ER fluid viscosity is controlled. Numerical simulations are also 
presented. 
Keywords: distributed parameter systems, force control, grasping, tentacle robots. 
 
 

INTRODUCTION 

The dynamic models of the tentacle manipulators are 
very complex. [10] proposes a dynamic model for hyper-
redundant structures as an infinite degree-of-freedom 
continuum model and some computed torque control 
systems are introduced and a sequential distributed control 
is suggested for a tentacle manipulator actuated by electro-
rheological fluids. 

Fig. 1. Tentacle arm 
 

Fig. 2. The arm form 
 

In this paper, the problem of a class of hyperredundant 
arms with continuum elements that performs the grasping 

function by coiling is discussed. This function is often met 
in the animal world as in the elephant’s trunk, the octopus 
tentacle or the constrictor snakes. First, the dynamic model 
of the system is inferred. Energy-based control laws are 
introduced for the position control problem. A force 
control method is proposed, namely the DSMC method, 
implying the evolution of the system on the switching line 
by ER fluid viscosity control. 

BACKGROUND 

The technological model. The paper presents a class 
of tentacle arms that can achieve any position and 
orientation in 3D space, and that can perform a coil 
function for the grasping (Fig.1). The arm has a high 
degree of freedom structure or a continuum structure. 
Technologically, these arms are based on the use of 
flexible composite materials in conjunction with active 
controllable electro-rheological (ER) fluids.  

Fig. 3. The arm element 
 

The general form of the arm is shown in Fig. 2. It 
consists of a number (N) of elements, cylinders made of 
fiber-reinforced rubber. There are four internal chambers 
in the cylinder, each of them containing the ER fluid with 
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an individual control circuit. The last m elements ( )Nm <  

represent the grasping terminal. These elements contain a 
number of force sensors distributed on the surface of the 
cylinders. The sensor network is constituted by a number 
of impedance devices [6] that define the dynamic 
relationship between the grasping element displacement 
and the contact force. 

The Theoretical Model. The core of the tentacle model 
is a 3-dimensional backbone curve C that is parametrically 

described by a vector ( ) 3Rsr ∈  and an associated frame 

( ) 33×∈ Rsφ  whose columns create the frame bases (Fig. 4). 

Fig. 4. The 3-dimensional backbone model 
 

The independent parameter s is related to the arc-length 

at the origin of the curve C, [ ]Ls ,0∈ , where: ∑
=

=
N

i
ilL

1

, 

where il  represent the length of the elements i of the arm 

in the initial position. We used a parameterization of the 
curve C based upon two “continuous angles” ( )sθ   and 

( )sq  (Fig.4). At each point ( )tsr , , the robot’s orientation 

is given by a right-handed orthonormal basis vector 
{ }zyx eee ,,  and its origin coincides with point 

( )tsrr ,= , where the vector xe  is tangent and the vector 

ze  is orthogonal to the curve C . 

The position vector on curve C is given by: 
 

( ) ( ) ( ) ( )[ ]Ttsztsytsxtsr ,,,, =  (1) 

 

where ( ) ( ) ( )∫ ′′′=
S

sdtsqtstsx
0

,cos,sin, θ , 

( ) ( ) ( )∫ ′′′=
S

sdtsqtstsy
0

,cos,cos, θ , 

( ) ( )∫ ′′=
S

sdtsqtsz
0

,sin, , with [ ]ss ,0∈′ . 

For an element dm, the kinetic and gravitational 

potential energy will be: ( )2222

2

1
uzyx vvvvdmdT +++= , 

zgdmdV ⋅⋅= , where dsdm ρ= . We shall consider 

( )tsF ,θ , ( )tsFq ,  the distributed forces on the length of the 

arm that determine motion and orientation in the θ - and 
q - plane. From [9], the mechanical work is: 

 

( ) ( ) ( ) ( )( )∫ ∫ +=
l t

q dsdsqsFssFL
0 0

,,,, ττττθτθ ��   (2) 

where θ� , q�  denote: ( ) ( )ts
t

ts ,,
∂
∂

=
θθ� , ( ) ( )ts

t

q
tsq ,,

∂
∂

=� . 

DYNAMIC MODEL 

In this paper, the manipulator model is considered a 
distributed parameter system defined on a variable spatial 
domain [ ]L,0=Ω  and the spatial coordinate s. The 

distributed parameter model is: 
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where we used the notations: ( ) ttsqq ∂′∂=′ ,� , 

( ) 22 , ttsqq ∂′∂=′�� , ( )tsFF qq ,= , [ ]Ls ,0∈ , 

[ ]ss ,0∈′ . 

The state of this system at any fixed time t is specified 

by the set ( ) ( )( )stst ,,, νω , where [ ]Tqθω =  represents 

the generalized coordinates and ν  defines the momentum 
densities. The set of all functions Ω∈s  that ω , ν  can 
take on at any time is the state function space ( )ΩΓ . We 

shall assume that ( ) ( )Ω⊂ΩΓ 2L . The control forces have 

the distributed components along the arm, ( )tsF ,θ , 

( )tsFq , , [ ]Ls ,0∈ , that are determined by the lumped 

torques, 
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( ) ( ) ( )∑
=

−=
N

i
i tilstsF

1

, θθ τδ   (5) 

 

( ) ( ) ( )∑
=

−=
N

i
qiq tilstsF

1

, τδ   (6) 

where δ  is Kronecker delta, llll N ==== …21 , and 

 

( ) ( ) 821 dSppt iii ⋅−= θθθτ   (7) 

 

( ) ( ) 821 dSppt qiqiqi ⋅−=τ , Ni ,,2,1 …=  (8) 

 

In (7), (8), 1
ipθ , 2

ipθ , 1
qip , 2

qip  represent the fluid 

pressure in the two chamber pairs, θ , q  and S, d are 

section area and the diameter of the cylinder, respectively 
(Fig. 3). The pressure control of the chambers is described 
by the following equations, according to [5] 

 

( ) ki

k
i

ki u
dt

dp
a θ

θθ =    (9) 

 

( ) qki

k
qi

ki u
dt

dp
qb = , 2,1=k ; Ni ,,2,1 …=  (10) 

 
where kia , kib  are the coefficients determined by the fluid 

parameters and the geometry of the chambers and 
( ) 00 >kia , ( ) 00 >kib , where 2,1=k ; Ni ,,2,1 …= ; 

( )ΩΓ∈q,θ . 

 

CONTROL PROBLEM 

The control problem of the grasping function by 
coiling is constituted from two problems: the position 
control of the arm around the object-load and the force 
control of grasping. 

Fig. 5. The coiling function 
 

Position control. We consider that the initial state of 

the system is given by ( ) [ ]Tqs 000 ,,0 θωω == , 

( ) [ ]Ts 0,0,00 ==νν , where ( )s,00 θθ = , ( )sqq ,00 = , 

[ ]Ls ,0∈  corresponding to the initial position of the arm 

defined by the curve 0C : 

( ) ( )( )sqsC 000 ,: θ , [ ]Ls ,0∈  (11) 

 
The desired point in ( )ΩΓ  is represented by a desired 

position of the arm, the curve dC  that coils the load: 

 
( ) ( )( )sqsC ddd ,: θ , [ ]Ls ,0∈  (12) 

 
In a grasping function by coiling, only the last m 

elements ( )Nm <  are used. Let gl  be the active grasping 

length ∑
=

=
n

mi
ig ll . Let bC  be the curve that defines the 

boundary of the load and we denote by bO  the origin of 

the coiling function, where bO  is the intersection between 

the tangent from origin O and the curve LC  (Fig. 5). This 

curve can be expressed using the coordinates 
( ) ( )ΩΓ∈q,θ . 

 

( ) ( )( )∗∗ sqsC bbb ,: θ , [ ]bLs ,0∈∗  (13) 

 
where bL  is the length of the coiling measured on the 

boundary bC  and ∗+−= slLs g . We define the position 

error by ( )te p  

 

( ) ( ) ( )( ) ( ) ( )( )( )∫
−

−+−=
L

lL

bbp

g

dssqtsqstste ,, θθ (14) 

 
It is difficult to measure practically the angles θ , q  

for all [ ]Ls ,0∈ . These angles can be evaluated or 

measured at the terminal point of each element. In this 
case, the relation (14) becomes 

( ) ( )( ) ( )( )( )∑
=

−+−=
N

mi
biibiip qtqtte θθ  (15) 

 
Fig. 6. The contact between load and arm 

 
The error can also be expressed with respect to the 

global desired position dC  
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( ) ( ) ( )( )∑
=

+=
N

i
qiip tetete

1
θ   (16) 

 
The position control of the arm means the motion 

control from the initial position 0C  to the desired position 

bC  in order to minimize the error. 

Theorem 1. The closed-loop control system of the position 
(3) - (10) is stable if the fluid pressure control law in the 
chambers of the elements is given by: 

 

( ) ( ) ( ) ( )( )tektekatu i
j
ii

j
ijiji θθθθθ θ ��� 21 +−=  (17) 

 

( ) ( ) ( ) ( )( )tektekbtu qi
j

qiqi
j

qijiqji ��� 21 +−= θ , (18) 

 
where 2,1=j ; Ni ,,2,1 …=  with initial conditions: 

 

( ) ( ) ( ) ( )000 211121
iiiii ekkpp θθθθθ −=−  (19) 

 

( ) ( ) ( ) ( )000 211121
qiqiqiqiqi ekkpp −=−  (20) 

 
( ) 00 =ieθ� , ( ) 00 =qie� , Ni ,,2,1 …=  (21) 

 

and the coefficients ikθ , qik , mn
ikθ , mn

qik  are positive and 

verify the conditions 
 

( )2111

8 iii kk
Sd

k θθθ −= , ( )2111

8 qiqiqi kk
Sd

k −= ,  (22) 

 
2111
ii kk θθ > ; 2212

ii kk θθ > ; 2111
qiqi kk > ; 2212

qiqi kk > . (23) 

 
The Force control. The contact between an element and 

the load is presented in Fig. 6. It is assumed that the 
grasping is determined by the chambers in the θ -plane. 

The relation between the fluid pressure and the 
grasping forces can be inferred for a steady state, 

 

( ) ( ) ( ) ( )

( )
8

~~~~

21

0 00
2

2

d
Spp

dssTsTsfds
s

s
k

l s
T

l
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∂

∂
∫ ∫∫ θθθ

  (24) 

 
where 

 

⎥
⎦

⎤
⎢
⎣

⎡
−

=
01

10~
T ; ( ) ⎥

⎦

⎤
⎢
⎣

⎡
=

θ
θ

θ
sin

cos~
s   (25) 

 
and ( )sf  is the orthogonal force on the curve bC , ( )sf  is 

( )sFθ  in θ -plane and ( )sFq  in q-plane, respectively. 

A spatial discretization 121 ,,, lsss …  is introduced and  

ii ss −=∆ +1 , ( )ii sθθ = , 1,,2,1 li …= . For small 

variation iθ∆  around the desired position idθ , in the θ -

plane, the dynamic model (3) can be approximated by the 
following discrete model [7], 

Fig. 7. The block scheme of the control system 
 

( )
( ) ( ),,

,,

eiiidid

didiidiiiii

FfdqH
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−=−
−∆++∆+∆

θ
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   (26) 

 
where ∆= Smi ρ , 1,,2,1 li …= , ( )did qH ,θ  is a 

nonlinear function defined in the desired position 
( )did q,θ , ( )diii qcc ,, θν= , 0>ic , ( )ΩΓ∈q,θ  

and ν  is the viscosity of the fluid in the chambers. 
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qq
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,

,,,

  (27) 

 
and eiF  is the external force due to the environment. 

The equation (26) becomes, 
 

( )
( ) ( )eiiiididi

idiiii

Ffdqh

qcm

−=∆⋅+
+∆+∆

θθ
θθνθ

,

,, ���
 (28) 

 
The aim of the explicit force control is to exert a 

desired force idF . If the contact with the load is modeled 

as a linear spring with constant stiffness Lk , the 

environment force can be approximated as: 
 

iLiiLiiLiei qkqkwkF ∆≈∆∆≈∆= sin  (29) 

 
The error of the force control may be introduced in the 

form of 
 

idiefi FFe −=     (30) 

 
It may be easily shown that the equation (28) becomes 
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Theorem 2. The closed force control system is 
asymptotically stable if the control law is 

 

( )
( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−−

−++
=

idiLi

fiiiLi

iL
i

Fdkh

emdkh

dk
f

21 σ
 (32) 

 
σii mc >     (33) 

 
Proposition. The DSMC control is ensured if the 
coefficients ic  of the control system verify the conditions: 

 

( )Liiii kdhmc +> 42    (34) 

 
The force control system is developed into two steps. 

In the first step, according to Theorem 2, the trajectory of 
the error is controlled by the force if . In the second step, 

the viscosity of the fluid is increased and the trajectory 
switches directly toward the origin on the switching line 
(Fig.7). 

SIMULATION 

A tentacle manipulator with eight elements is 
considered. The control problem in the θ -plane will be 
analyzed. The initial position is the one defined by 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ =

2
: 00

πθ sC  and the grasping function is performed  

for a circular load defined by 

( ) ( ) 22
0

2
0: ryyxxCb =−+− ∗∗∗∗ , where ( )∗∗ yx ,  represent 

the coordinates in θ -plane. A discretization for each 
element with an increment 3l=∆  is introduced. 
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Fig. 8. The position control 

CONCLUSIONS 

The paper treats the control problem of a tentacle 
robot with continuum elements that performs the coil 
function for grasping. The structure of the arm is given by 
flexible composite materials in conjunction with active-
controllable electro-rheological fluids. The dynamic model 
of the system is inferred by using Lagrange equations 
developed for infinite dimensional systems. 
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