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Abstract 
 
The paper deals with finite element analysis of damped modal vibrations Q-factor values determined by thermal-elastic 
damping in micro-electrical-mechanical systems (MEMS). Mathematically the problem is formulated as a complex 
eigenvalue problem. Verification problems have been solved by using several computational environments and different 
presentations of model equations in order to comprehend and reduce the influence of rounding errors. The analysis of 
damped modal properties of selected real MEMS resonator revealed the main features of thermal-elastic damping by 
taking into account 3D geometry of the resonator and anchoring (clamping) structure. 
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1. Introduction 

 
Physical models of vibration damping in structures 

are complex. Mathematical models of traditional 
machines and mechanisms often included correct terms 
describing damping (friction) forces in kinematic pairs 
and enabled to obtain corresponding solutions. 
Performances of dampers could be measured 
experimentally and thereafter used for indicating 
precisely their mechanical effect upon the structure. In 
practical calculations very often the damping forces were 
evaluated approximately, however, the main reason for 
making simplifications was the desire to obtain simpler 
expressions and easier solved equations. For example, if 
only linear velocity proportional damping is assumed, 
complex eigenvalues λ of the structure can be calculated 
by applying well-known numerical algorithms. The 
imaginary parts of eigenvalues identify the 
eigenfrequencies of the structure, and the ratio of 

imaginary and real parts as 
Im( )

2* Re( )
Q

λ
λ

=  evaluate the 

quality factor (Q-factor, dynamic amplification factor) of 
the vibrating structure. This kind of information in many 
cases can be regarded as sufficient for the 
characterization of main dynamic properties of the 
structure. The reasoning for the selection of damping 
coefficient value is that the computed and experimental 
results should agree. This value should be treated as a 
certain generalized characteristic of a specific structure, 
which integrally takes into account numerous effects and 
conditions of internal and external friction.  

Smaller linear dimensions of new systems and 
structures implicate different constructions and 

compositions. Traditional kinematic pairs and linkages 
between links of the structures are abandoned and the 
functionality ensured by employing controlled deformation 
or vibration of elastic parts. The damping effect takes place 
mostly due to internal friction forces created in the material. 
Correct mathematical description of such damping forces is 
more complex, as in most cases the forces cannot be 
measured directly. In structures with linear dimensions of 
millimeters or centimeters approximate linear damping 
models are often applied. Basing on the assumption that the 
losses in vibrating piezoelectric structures is conditioned by 
mechanical, piezoelectric and electric phenomena, linear 
damping terms are used in the dynamic equations. Though 
the nature of real damping forces is quite complicated, 
approximately it is presented by the hysteretic loop of the 
stress-strain relationship. If harmonic vibration is analyzed, 
the hysteretic is approximately described by introducing 
complex-valued stiffness coefficients as [ ] [ ]( )1 Mjη= +c c , 

where Mη  is the mechanical dissipation factor. Its physical 

meaning is the phase angle between stresses and strains of 
the harmonically vibrating structure. The complex value of 

[ ]c

 

implies that the calculations are performed in frequency 

domain, therefore the stiffness matrix of the structure is 

presented in complex form as ( )1 Mjη+[K] . Mathematically 

the same effect could be obtained by using the linear 

damping term { }[C] U  in the finite element structural 

equation, where [ ] [ ]Mη=C K  is the proportional damping 

matrix, [ ]K - stiffness matrix, { }U - nodal displacement 

vector. The general form of the proportional damping matrix 

reads as 1 2
e e ea a⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦C M K , where coefficients 
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1 2,a a  are easily found by virtue of known values of the 

Q-factor of the structure corresponding to two modal 
frequencies. Very similar consideration could lead to 
complex values of electromechanical and dielectric 
permittivity coefficients, [1]. Such simplified vibration 
damping models are applicable where the damping is not 
high and where the aim of calculation is to investigate the 
dynamic behavior of a structure at given values of its Q-
factor.  

Investigating electromechanical systems in micro- and 
nano-electrical-mechanical system (MEMS and NEMS) 
range of dimensions poses even more complex problems 
of adequate evaluation of structural damping. Though 
usually the continuum-based finite element models are 
applied for presenting strains and stresses, the 
proportional damping assumptions appear as too rough 
and imprecise. The Q-factors of MEMS often are very 
high and may reach 5 910 10− . The new MEMS designs 
require to predict the expected value of Q-factor of the 
system and to know, which particular factors may 
influence this value. In reference [2] a comprehensive 
analysis of physical phenomena influencing the vibration 
damping in GaAs and Si mono-crystal resonators has 
been performed. The influence of temperature, magnetic 
fields, frequency and linear dimensions of MEMS has 
been investigated experimentally. Physical causes of 
damping can be identified as thermal-elasticity, clamping 
losses, coupled anharmonic modes, surface anisotropy 
and internal defects. In the measured cases the friction at 
the zones of internal defects has been recognized as the 
main reason of damping. In [3] experimental 
investigations of MEMS-gyro have been directed to the 
analysis of thermal-elastic damping. The electronic 
circuit damping ( 113.5 10Q ≈ × ), thermal-elastic damping 

( 4 53.3 10 -  8.29 10Q = × × ) and damping caused by other 

factors ( 52.5 10Q ≈ × ) have been distinguished. On the 

base of the obtained results the conclusion could be 
drawn that for a particular MEMS-gyro structure thermal-
elastic damping appears as a very important factor 
determining the overall Q-factor of the vibrations. 
Clamping losses appeared to have the main influence 
among of the damping sources caused by other factors.  

Certain theoretical investigations in the field of 
thermal-elastic damping have been performed as early as 
in ~1930-40, [4]. The formula for obtaining the Q-factor 
of the first bending mode of a clamped beam has been 
derived, [5]. The analytical investigation of the first 
longitudinal mode of an unsupported beam has been 
performed in [6], and analytical results have been 
compared against the finite element modeling results. 
Satisfactory coincidence of results has been obtained 
under an assumption that the temperature values at ends 
of the beam are known and constant.  In reality, the 
assumption of prescribed beam end temperatures lacks a 
sound physical explanation, however, the temperature 
values at this zone may be assumed to vary within a very 
small range due to negligibly small strains at the ends of 

an unsupported beam. Finite element software COMSOL 
Multiphysics has been employed for calculations in [6], 
where the „coefficient“ form of the presentation of equations 
has been chosen.  However, no analysis could be found 
regarding the possible loss of numerical accuracy during the 
solution of the eigenproblem, which may be significant as 
the real parts of the eigenvalues in practical cases are up to 

5 910 10− times smaller than the imaginary ones.  
This work presents the finite element analysis of 

eigenfrequencies and Q factors of sample structures and real 
MEMS structures by taking into account thermal-elastic 
effects and the influence of the geometry of the clamping 
zone.  

 
2. Finite element model 

 
MEMS are etched 3D structures, which consist of the 

active Si structure separated from the foundation substrate 
by the SiO2 intermediate layer. The vibrations of active 
elements are excited by means of interaction forces among 
electric charges supplied to appropriate zones of the 
structure. Even in case of linear models of physical 
phenomena, the deformation of MEMS under the action of 
electrical field is described by non-linear equations. During 
deformation processes of active elements the 3D MEMS 
geometry, as well as, electrical field strength are not 
constant.  

The eigenvalue problem of MEMS vibrations at the first 
approximation may be assumed as linear. The reasoning for 
such assumption is that the modal analysis is performed 
without taking into account the excitation forces, which are 
the main cause of the non-linearity of the electro-mechanical 
coupling.  The model presented in this work is presented as 
a system of partial differential equations (PDE), which 
describe the elastic and thermal phenomena in the MEMS 
structure.  

Elastic vibrations of solids are described in volume V 
and its surface S by means of PDE as  

 

[ ] { } { } { } ,A σ b uρ+ = ∈T
V         (1) 

 
and boundary conditions as:  

 

{ } [ ] { } ,t A σ= ∈T

s S          (2) 

 
where { }σ  - stress tensor in Foigt’s notation, { }b  - body 

force vector, { }t  - surface force vector, given on surface S, 

{ }u  - displacement vector of any point of the volume, ρ - 

mass density, [ ]A  - differential operator, [ ]sA  - matrix 

containing the components of the external normal vector 

{ }n  of surface S.  In a general 3D case we have
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[ ] [ ]
0 0 0 0 0 0

0 0 0 ; 0 0 0

0 0 00 0 0

A A

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

T

x z y x z y

s y z xy z x

z y xz y x

n n n

n n n

n n n
. 

 
The constitutive equation relates stresses, strains and 

temperature as  

{ } [ ] { } [ ]( )( )0σ = c ε κ− −T T                               (3) 

where { }ε  - strain tensor in Foigt’s notation; [ ]c  - 

stiffness tensor, { } { }0 0 0
Tκ κ κ=κ  - vector of 

thermal expansion coefficients, T - temperature at any 
point of the body, 0T  - reference temperature (i.e., the 

absolute temperature of a body is 0 +T  T ). 

The temperature of the body is not known in advance 
as physical laws of thermodynamics govern them. The 
generation of heat due to elastic strain rate should be 
treated as one of body sources of heat. The heat exchange 
is described by the diffusion PDI as  

 

[ ] [ ]{ }
2 2 2

022 2
, (4)

T
x y z T v

T T T
b T   c T  V

yx z
κλ λ λ∂ ∂ ∂+ + + − = ∈

∂ ∂∂
c ε

where:  
T - temperature [K];  
b - body source of heat; positive if the heat is supplied to 

the body, [W/m3];  
q - heat flux density; positive if the heat is withdrawn 

from the body [W/m2];  
α -  coefficient of heat convection between the body and 

the surrounding [W/(Km2)]; 
λ  -  heat conduction coefficient,  [W/(Km)]; 

v pc cρ= - volumetric heat capacity of the material 

[J/(m3 K  )] ; 

pc   -   mass heat capacity of the material [J/(K kg  )]; 

ρ   - density of the material [kg/ m3 ] ; 

The boundary conditions on surface S are presented as  
 

( ) 0,x x y y z z

T T T
n T        n n ST

x y z
ααλ λ λ ∞

∂ ∂ ∂
+ + + − = ∈

∂ ∂ ∂
 

0, ,x x y y z z q

T T T
q        n n n S

x y z
λ λ λ

∂ ∂ ∂
+ + + = ∈

∂ ∂ ∂
 

, ,p pT        ST= ∈                                        (5) 

 
(5) represent three possible types of boundary 

conditions. On surface pS the temperature values are 

prescribed. On surfaces Sα  and qS  the heat flux density 

normal to the surface is defined as 

x x y y z z

T T T
- - -n n n

x y z
λ λ λ

∂ ∂ ∂
∂ ∂ ∂

, however, the two equations 

define its value in two different ways. On surface Sα the 

value of heat flux density is proportional to the difference of 
temperatures of the body and of the surrounding one. 
Thermally isolated surfaces are defined by assuming 

0α = . On surface qS  the heat flux density is considered as 

being prescribed and equal to q , which is positive when the 

heat is withdrawn from the body.  
By applying weighted residual techniques, from PDE (1) 

and (4), boundary conditions (2) and (5) and constitutive 
equation (3) we derive the matrix equation of a finite 
element as: 

 

{ } { }
{ }

{ } { } { } { } { }
0

00 0

00

00 0 0
T

T T T TT TT T ∞

⎡ ⎤⎧ ⎫ ⎧ ⎫⎡ ⎤⎧ ⎫ ⎧ ⎫− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥+ + =⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎡ ⎤ + + + +⎢ ⎥ ⎡ ⎤ ⎡ ⎤+⎡ ⎤ ⎡ ⎤ ⎪ ⎪⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎩ ⎭⎣ ⎦ ⎩ ⎭⎣ ⎦

[C] {U} {U}K H {R}+{P} H T[M] {U}
TK P S S Q K TH C C T

 (6) 

 

Where [ ] [ ] [ ]T

V

dVρ= ∫M N N , [ ] [ ] [ ][ ]K B c B= ∫ T

V

dV  - 

mass and stiffness matrices;  

[ ][ ][ ] =B A N ; 

[ ]N  and [ ]TN  - form function matrices, which 

interpolate displacements and temperatures within a finite 
element; 

1 2[ ] [ ] [ ]a a= +C M K - proportional damping matrix, 

where 1 2,a a  - coefficients.  

[ ] [ ] [ ]T
T v T T

V
c dV= ∫C N N  - heat capacity matrix of the 

element; 

[ ] [ ] [ ][ ] [ ] [ ]T T
T T T T T

V V
dV dSα= +∫ ∫K B Λ B N N - heat 

conduction matrix of the element; 

[ ] [ ]( ) [ ]
x

T T Ty

z

grad

∂
∂
∂
∂

∂
∂

⎡ ⎤
⎢ ⎥
⎢ ⎥= = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B N N ; 

[ ] [ ]( )diag λ=Λ  - heat conduction coefficients;  

[ ] [ ] [ ][ ][ ]T
T

V
dVκ= ∫H B c N  - thermal-elastic matrix of the 

element; 
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{ } [ ] { }T

V

dV= ∫P N b - nodal force vector determined by 

body forces; 

{ } [ ]TT T T
V

b dV= ∫P N  - nodal power vector, determined 

by prescribed body heat sources;  

{ } [ ]
q

T
T T

S

qdS= −∫S N - nodal power vector, determined by 

prescribed heat flux density across the surface;  

{ } [ ]T
T

S

T dS
α

α∞ ∞= ∫S N - nodal power vector, determined by 

thermal exchange with the surrounding across the surface;  
{ }Q - vector of prescribed nodal power; 

{ }R - vector of prescribed nodal forces. 

During the investigation of modal vibration the right-
hand side vector in (6) is assumed as zero. Second order 
differential equation system (6) can be transformed to the 
first order differential equation system by performing 

substitution { } { }=V U . The obtained first order differential 

equation system reads as  
 

 

[ ]
[ ]

{ }

{ }

[ ] [ ]
[ ]
[ ] [ ]

{ }

{ }0 0

0 0 0

0 0 0 0 0

00 0 0
T

T T TT T

⎡ ⎤⎧ ⎫ ⎡ ⎤⎧ ⎫− ⎧ ⎫⎢ ⎥⎪ ⎪ ⎢ ⎥⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥+ − =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎡ ⎤ + ⎩ ⎭⎢ ⎥ ⎢ ⎥ ⎩ ⎭⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭⎣ ⎦

V[M] [C] K H V

I {U} I {U}

TTC C H K , (7) 

 

The eigenvalue problem is formlated as 

 

[ ] [ ]
[ ]
[ ] [ ]

[ ]
[ ]00

0 0

det 0 0 0 0 0

0 00
T

T TT TT

λ

⎛ ⎞⎡ ⎤ ⎡ ⎤−⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥− + =
⎜ ⎟⎢ ⎥ ⎢ ⎥

⎡ ⎤⎜ ⎟+⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠

[C] K H [M]

I I

C CH K     . (8) 

 

 
After eigenvalue (8) is solved, the obtained complex 

eigenvalues define the Q-factor of the structure as 
Im( )

2* Re( )
Q

λ
λ

=  . 

 

 
3 Analysis of results 

 
3.1 Investigation of longitudinal vibration modes of a 
beam resonator   

 
Investigation of longitudinal vibration modes of a 

beam resonator has been performed in order to verify the 
finite element model. The natural frequencies obtained by 
using different software and in different spatial 
dimensions (1D and 3D) of the same beam have been 
compared against each other. The material constants of 
the beam are as presented in Table 1, [6]. 

1D model in MATLAB environment has been 
implemented by using equations (6)-(8). In 1D case the 
uniaxial stress is assumed, however, strains are exhibited 
in all 3 spatial directions. In the case of isotropic material 
their values are obtained from equation (3) presented in 
expanded form as (9): 

 
 
 

Table 1 
Si material constants 

 

Material constant Value Units 

Young’s modulus, E  1.69e11 Pa 

Mass density,  ρ  2330 kg/(m^3) 

Poison’s coefficient, ϑ  0.3 - 

Thermal expansion 
coefficient, κ  

2.59 e-6 1/K 

Mass specific heat , pc  713 m^2/(K*s^2) 

Thermal conduction 
coefficient, λ   

156 kg*m/(K*s^3) 

Reference temperature, 

initT  
290 K 
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( )
( )
( )

0

0

0

1 0 0 0
1 1

1 0 0 0
1 1

1 0 0 0
1 1(1 )

1 2(1 )(1 2 ) 0 0 0 0 0
2(1 )

1 2
0 0 0 0 0

2(1 )

1 2
0 0 0 0 0

2(1 )

x x

y y

z z

xy xy

yz

xz

T T

T T

T TE

ϑ ϑ
ϑ ϑ

ϑ ϑ
σ ε κϑ ϑ
σ ϑ υ ε κ

ϑ υσ ε κϑ
ϑτ υ ϑ γ
ϑτ γ

ϑτ
ϑ

ϑ
ϑ

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥ − −⎧ ⎫ − −
⎢ ⎥⎪ ⎪ − −⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪ − − − −−⎪ ⎪ = ⎢ ⎥⎨ ⎬ −+ − ⎢ ⎥⎪ ⎪

−⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪ −⎢ ⎥⎪ ⎪⎩ ⎭
⎢ ⎥−
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

yz

xzγ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 (9) 

 
After substituting values 0z yσ σ= =  into (9) we 

obtain ( )( )01y z x T Tε ε ϑε κ ϑ= = − + + − .  

Matrices of linear 2-node element are presented as  

 

[ ] [ ] [ ] [ ] [ ] [ ][ ]

[ ] [ ] [ ][ ][ ] ( )2

1 0 1 1
; ;

0 1 1 12

11 1 1 0
; .

1 1 0 12 (1 2 )

T Tv
T v T T T T T

V V

T
T T

V

c Al A
c dV dV

l

AlEAE
dV

λ

κ ϑκκ
ϑ

−⎡ ⎤ ⎡ ⎤
= = = =∫ ∫⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

+− −⎡ ⎤ ⎡ ⎤⎡ ⎤= = =∫ ⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎣ ⎦ ⎣ ⎦

C N N K B Λ B

H B c N C

  (10) 

 
After structural matrices are assembled, eigenvalue 

problem (8) is solved by using the MATLAB function 
eig . The results regarding the 1st longitudinal mode 
are presented in Table 2, 6th column. It appears important 
to mention the danger of possible loss of arithmetic 
accuracy of the solution. In case of linear measures 
corresponding to MEMS, numerical values residing in 
matrices of equation (8) may be of a very different 
magnitude. As a consequence, the eigenproblem solution 
process may diverge, or its accuracy may be lost. This 
regards mainly the real parts of eigenvalues, which may 
be up to 5 910 10− times smaller than the imaginary ones. 
Proper scaling should be applied in order to avoid or 
diminish the above-mentioned effect. As one of the 
possible ways of scaling a proper change of units system 

may be applied. Instead of basic units of SI as 

[ ], , ,m kg s K  we used the unit system 

7 6, , 10 , 10
m

kg s K
number of elements

−⎡ ⎤
⎢ ⎥
⎣ ⎦

.  

1D model in COMSOL Script environment is 
presented in a “general” form  

 

a

v

d u F

T

⎧ ⎫
⎪ ⎪+∇ ⋅Γ =⎨ ⎬
⎪ ⎪
⎩ ⎭

   , which in 1D case reads as  

 

( )2
00

0
0 1 0

0 0 0 ;

2 1
0 0

1 2v

v v
u

u c c T V
x x

T T c vT c
TC

x

ρ κ
κκ ϑ

λϑ

⎧ ⎫
⎡ ⎤ ⎪ ⎪
⎢ ⎥ ⎪ ⎪⎧ ⎫ ⎧ ⎫⎢ ⎥ ⎪ ⎪∂ ∂⎪ ⎪ ⎪ ⎪⎡ ⎤ ⎡ ⎤− − = ∈⎢ ⎥ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+ ⎩ ⎭ ⎩ ⎭⎢ ⎥ ⎪ ⎪∂+ ⎡ ⎤⎢ ⎥ ⎪ ⎪−⎣ ⎦ ⎢ ⎥∂⎣ ⎦⎩ ⎭

   ,             (11) 

where                   

( )2
00

0
0 1 0

0 0 ; ; 0 .

2 1
0 0

1 2

a

v

v
u

d c c T F
x

T c vT c
TC

x

ρ κ
κκ ϑ

λϑ

⎧ ⎫
⎡ ⎤ ⎪ ⎪
⎢ ⎥ ⎪ ⎪ ⎧ ⎫⎢ ⎥ ⎪ ⎪∂ ⎪ ⎪⎡ ⎤= Γ = − − =⎢ ⎥ ⎨ ⎬ ⎨ ⎬⎢ ⎥∂⎣ ⎦⎢ ⎥ ⎪ ⎪ ⎪ ⎪+ ⎩ ⎭⎢ ⎥ ⎪ ⎪∂+ ⎡ ⎤⎢ ⎥ ⎪ ⎪−⎣ ⎦ ⎢ ⎥∂⎣ ⎦⎩ ⎭
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Boundary conditions are presented as  

 

;
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.  

The later boundary condition means that temperatures of 
certain points of a structure are known in advance (Dirichlet 
boundary condition). If the beam is thermally insulated the 
boundary conditions G and R are both zeros, i.e. the natural 
boundary conditions are valid by default.  

As all equations are linear, the COMSOL “coefficient” 
form is applicable as  
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The results regarding the 1st longitudinal mode are 

presented in Table 2, 5th column. 
3D model in COMSOL Multiphysics environment has 

been created by using the GUI as a coupled two-field 
Multiphysics problem. Two application modes have been 
coupled: 

• MEMS Module-> Structural Mechanics->Plane 
Stress->Damped eigenfrequency analysis; 

• COMSOL Multiphysics->Heat Transfer -
>Conduction->Transient analysis. 

Thermal-mechanical coupling is ensured by entering 
the body heat source, which described the generation of 
the heat in the volume at given strain rates as 

0

1 2

T c u v w

x y z

κ
ϑ
⎛ ⎞∂ ∂ ∂

− + +⎜ ⎟− ∂ ∂ ∂⎝ ⎠
 and the expansion of the solid 

due to temperature variation 0T T− . The results 

regarding the 1st longitudinal mode are presented in 
Table 2, 5th column  

Analysis of the results of Table 2 demonstrates that 
TED phenomena cause only very slight increase 
(~0.01%) of the modal frequency compared with the 
modal frequency obtained without considering TED, 2nd 
and 3rd columns of Table 2. However, the most important 
result of the calculation is the obtained Q-factor value 
(note that without considering TED the theoretical value 
of the Q-factor should be infinite as no internal friction 
effects are considered in the model). For verification 
purposes Table 2 presents the Q-factor values obtained 
for 1D and 3D models.  

4 column of Table 2 presents the results obtained in 
[6], and 5th and 6th columns display the results obtained 
in this work by using the MATLAB and COMSOL Script 
models described above. It is worth to mention that 
columns 4-6 present the results of analysis of 
mathematically identical (!) models, however, slightly 

different results (up to 1-2%) can be observed. It seems 
reasonable to assume that different numerical values are 
caused by rounding errors, which are caused by specific 
values of coefficients of PDEs. Though the accuracy of 
calculations is satisfactory for engineering purposes, the 
calculations should be performed very carefully and 
additional effort should be devoted in order to persuade that 
the solution is within acceptable accuracy limits. Proper 
selection of physical unit system, as well as, scaling of 
variables may facilitate to obtain good solutions. Comparing 
the solutions obtained by using different scaling coefficients 
against each other also facilitate the understanding if the 
rounding errors do not influence the solution significantly. 
Results also may appear as slightly different, depending on 
eigenvalue problem solution algorithm used.  

Increased attention should be also devoted to the 
investigation of convergence of the solution. It is well 
known that in the solution of purely mechanical modal 
analysis problem only few elements are enough for 
obtaining the first mode of a structure. Even a single 
element is able to approximate reasonably the first modal 
frequency. If thermal-elastic damping is taken into account 
the number of elements should be much greater. For 
example, a single element is completely unable to represent 
the effect of TED, as its first eigenvalue is obtained as 
entirely complex (i.e. it does not describe the damping 
effect). The solutions in examples above have been obtained 
by using 70 first order or 35 second order elements along the 
length of the beam.  

Fig.1 presents the eigenform of distribution of 
amplitude values of temperature along the beam during its 
1st mode longitudinal vibration. The temperature values 
should be interpreted as relative ones rather than defined in 
Kelvin as they are determined by modal forms, which are 
dimensionless. Therefore relative values of temperature are 
presented by the contour plot over a domain. They change 
harmonically all the time as the resonator vibrates. The TED 
effect on modal vibrations depends on the reference 
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temperature 0T , i.e. on temperature of the structure 

before the experiment. The value of the modal frequency 
increases only very slightly with the increase of 

temperature, however, the Q-factor value is much more 
sensitive to the reference temperature variation, Fig. 2.  

 

Table 2 
Modal frequencies and Q-factors of 1st longitudinal mode of unsupported MEMS beams. Thermal-elastic damping 

(TED) taken into account at the condition of full thermal insulation 
 

1st modal frequency (Hz) Q-factor Length 

(µm) Without  TED  With  TED Ref. [6] 1D, COMSOL 
Script, 35 II 

order elements 

1D model, MATLAB,  

70  I order elements 

3D model, 

COMSOL 
Multiphysics 

0.5 8.51587e+009 8.51667e+009 1.0004e+005 1.002715e+005 1.0065e+005 1.005578e5 

5 8.51587e+008 8.51671e+008 7.8963e+005 7.91674e+005 7.98966e+005 7.938552e5 

50 8.51587e+007 8.51671e+007 7.4744e+006 7.48993e+006 7.66816e+006 7.513373e6 

500 8.51587e+006 8.51671e+006 7.3515e+007 7.32553e+007 7.64718e+007 7.375455e7 

1000 4.25793e+006 4.25835e+006 1.4670e+008 1.46297e+008 1.52940e+008 1.470492e8 

 
 

 
Fig. 1. Distribution of amplitude values of temperature along an unsupported beam resonator at 1st longitudinal mode 

 

 

Fig.  2. Dependance of the Q-factor of the first longitudinal 
mode of an unsupported beam  resonator against the 
reference temperature 

3. 2 Investigation of bending vibration modes of a beam 
resonator  

 
 

A 3D computational model of bending vibrations of a 
beam resonator in COMSOL Multiphysics environment is 
very similar to the one used in section 3.1 for longitudinal 
vibration analysis. The only difference is that the bending 
vibration model employs a single symmetry plane xOz along 
the beam, while two symmetry planes xOz and xOy have 
been used for longitudinal vibration investigation. The finite 
element mesh and 1 and 3 modal vibration forms are 
presented in Fig.3, where contours depict the temperature 
distribution over the beam caused by the thermal-elastic 
coupling. The beam is assumed to be completely thermally 
isolated.  
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                                                                                           (a) 
 

 
                                                                                         (b) 

 

 
                                                                                      (c) 
 

Fig. 3. Distribution of amplitude values of temperature at modal bending vibration of an unsupported beam resonator; length of the 
beam L=50 µm, cross-section height h=1.2 µm; 

  a) finite element mesh, symmetrical model; b) 1st mode,  f = 4194244 Hz; Q = 125715.6;   
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Fig. 4 depicts the 1st modal form of the same beam 
resonator clamped at both ends. The temperatures at the 
ends of the beam are assumed as known and equal to 
reference temperature 0T . The assumption is based on the 

fact that the clamped ends of the beam comprise a 
monolithic body with other parts and the base (substrate) of 
the body of MEMS chip. 

 

 
Fig. 4. Distribution of amplitude values of temperature at modal bending vibration of a beam resonator ideally clamped at the ends;   
           f = 4219332 Hz;  Q = 130337   

 
The influence of thermal boundary conditions 

and of the reference temperature on the Q-factor of 
the 1st bending mode may be analyzed, Table 3. If 
the temperatures at the ends of the beam are 
considered as given, the Q-factor of the bending 

mode is always calculated as larger than it would be 
for fully thermally isolated beam. The effect of 
thermal isolation of the beam was quite opposite 
when longitudinal vibrations were considered, [6].  

Table 3 
1st modal frequency and Q factor of a beam clamped at its ends at different reference temperature values 

 

 Ends of the beam thermally isolated  Temperature of ends of the beam equal to reference 
temperature  

T0 (K) f (Hz) Q f (Hz) Q 

100 4219332 320665 4219332 377978 

200 4219332 160332 4219332 188989 

290 4219332 110574 4219332 130337 

400 4219332 80167 4219332 94495 

 
 

3.3 Investigation of bending modes of resonators 
structures in 3D  

 
A layout of a sample resonator depicted in Fig. 5a 

presents an etched 3D structure, which consists of the 
active Si structure including the beam-type resonator and 
anchor, which is separated from the foundation substrate 
by the SiO2 intermediate layer. The anchors are resting on 
the intermediate layer meanwhile the intermediate layer 
material under the beam part of the resonator is removed. 

The resonator is able to perform in-plane and out-of-plane 
bending vibrations. The finite element models 
corresponding to positive and negative clamping (anchoring) 
angles are depicted in Fig. 5 b, c. The models present only 
active layer and intermediate layer the bottom surface of 
which was approximately assumed to be supported fixedly. 
Symmetric out of plane modes can be calculated by using a 
quarter symmetry model as in Fig. 6 b, c and symmetric in-
plane modes can be presented by using a symmetrical model 
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as in Fig. 7. The values of material constants of SiO2 used 
in our calculations are presented in Table 4. 

 
Table 4 

SiO2 material constants 
 

Material constant Value Units 

Young’s modulus, E  0.73e11 Pa 

Mass density, ρ  2200 kg/(m^3) 

Poison’s coefficient, ϑ  0.17 - 

Thermal expansion coefficient, 
κ  

0.55e-6 1/K 

Mass specific heat , pc  1000 m^2/(K*s^
2) 

Thermal conduction 
coefficient, λ   

1.4 kg*m/(K*s
^3) 

Reference temperature, initT  290 K 

 
The results obtained in case of ideally clamped 

beam (columns 6-7 of Table 5) produce a ~10% error 
both in modal frequency and the Q-factor. Therefore the 
ideally clamped beam model can be applied only for very 
rough estimations of the dynamic behavior of real 

resonators. The analysis results substantiate the necessity to 
employ 3D models, which represent full geometry of 
anchors and the intermediate layer. However, clamping 
geometry can be expected to be neither the reason nor the 
explanation of “clamping losses” mentioned elsewhere in 
the literature as the Q-factors of models containing the full 
clamping geometry produce Q-factor values even higher 
than those of ideally clamped beam model. Probably, the 
internal friction properties of SiO2 material should be 
investigated in order to provide the theoretical background 
for the clamping losses effect. The influence of reference 
temperature on the Q-factor value may be analyzed from 
Table 5, where the increase of reference temperature causes 
the rapid decrease of the Q-factor value. 

Numerical results of the 1st out-of-plane bending 
vibration mode in Table 6 present the values of modal 
frequency and Q-factors at two different clamping angles 

+ 30o , 30o− and in case of ideally clamped ends of the 
resonator, the distribution of amplitude values of 
temperature over the structure corresponding to the 1st mode 
being presented in Fig.7. The dependence of the Q-factor 
values on the reference temperature exhibits the same 
tendency as it was in the case of out-of-plane vibrations. The 
necessity of using 3D models presenting full 3D clamping 
geometry is obvious because of large difference in modal 
frequencies presented in columns 2 and 4 against column 6.  

 
 
 

Table 5 
Frequencies and Q-factors of the 1st out-of-plane bending mode of MEMS resonator at different values of the 

reference(surrounding) temperature and different anchoring conditions 
 

 Clamping angle +30o Clamping angle -30o Ideal console clamping 

T0 (K) f (Hz) Q f (Hz) Q f (Hz) Q 

100 7547432 122478 7731439 115290 8256405 108662 

200 7547437 61240 7731475 57646 8256409 54331 

290 7547443 42236 7731481 39756 8256413 37470 

400 7547449 30621 7731488 28824 8256419 27166 

 
 

 
Table 6 

Frequencies and Q-factors of the 1st in-plane bending mode of MEMS resonator at different values of the 
reference(surrounding) temperature and different anchoring conditions 

 

 Clamping angle +30o Clamping angle -30o Ideal console clamping 

T0 (K) f (Hz) Q f (Hz) Q f (Hz) Q 

100 22 049 920 61950 22 459 710 58778 25 074 130 59512 

200 22 050 500 31000 22 460 290 29412 25 074 800 29780 

290 22 051 020 21395 22 460 810 20298 25 075 400 20553 

400 22 051 650 15525 22 461 450 14729 25 076 130 14914 
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                                                                                a 
 

 
 
                                                                                b 
 

 
c 

Fig. 5.  Principal scheme of MEMS structure(a) and quarter-symmetry models for calculating the „out of plane“ bending modes at 
positive (b)and negative  (c) values of the clamping angle; length of the beam  L, cross-section height h, width of the beam b, 
height(thickness) of SiO2 layer  H 
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Fig. 6. Distribution of amplitude values of temperature at 1st out-of-plane bending mode vibration of a beam clamped at its ends; length 

of the beam L = 40 µm, height of the cross-section h=1.5 µm, width of the beam b = 5 µm, height (thickness ) of SiO2 layer        
H = 2.5 µm, clamping angle +30o; quarter-symmetry model, f = 7547443 Hz; Q = 42236   

 
 

 
 
Fig. 7. Distribution of amplitude values of temperature at 1st in-plane bending mode vibration of a beam clamped at its ends; length of 

the beam L = 40 µm, height of the cross-section h = 1.5 µm, width of the beam b = 5 µm, height (thickness) of SiO2 layer         
H=2.5 µm, clamping angle  -30o; symmetric model,  f = 22 460 810 Hz; Q = 20298 
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4. Conclusions  
 
The Q-factor determined by thermal-elastic damping 

of micro-electro-mechanical resonators structures is a 
very important dynamic characteristic since it provides 
the upper limit of the Q-factor that is possible to achieve 
in a structure of given geometry and materials under an 
assumption that no internal friction and other sources of 
damping are present.  

A  FEM computational model of longitudinal and 
bending vibrations of a beam resonator has been 
developed in order to analyze the eigenfrequencies and Q 
factors of test vehicle as well as real MEMS structures. 
Model verification has been performed by calculating 
modal properties of unsupported beam structures and 
comparing against published results.  

The analysis of the micro-electro-mechanical 
resonator revealed the main features of thermal-elastic 
damping by taking into account 3D geometry of the 
resonator and the anchoring (clamping) structure. The 
clamping angles and reference temperature have a 
significant influence on modal frequencies and Q-factors 
of the resonator. However, the calculations performed 
could not explain the clamping losses effect mentioned in 
the reference literature and suggests further investigations 
in this direction where the internal damping in silicon 
dioxide intermediate layer of the MEMS chip should be 
investigated in more details by setting-up properly 
planned physical and numerical experiments.  

The project is financially supported by NATO RTO 
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