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Abstract. Computation model of crankshaft was built and the dynamic characteristics of 

crankshaft were studied. FEM was performed to obtain the maximum main stress, the minimum 

main stress and the Mises stress at three kinds of critical working conditions of crankshaft. 

Through movement analysis and computation for various components of reciprocating mud pump 

(RMP), the loads of crankshaft were obtained. The maximum stress of crankshaft at the three kinds 

of dangerous operating modes was obtained from the FEM stress analysis. It is located in the 

critical region and the location belongs to the dangerous position in most of the fracture 

crankshafts. The FEM stress analysis results are very valuable in guiding actual application 

development for intelligence optimization design of RMP. 

Keywords: RMP, crankshaft, computation model, dynamic loading, FEM, stress analysis. 

1. Introduction 

RMP are widely used for pumping viscous liquids and oil wells. It is designed to circulate 

drilling fluid under high pressure down the drill string and back up the annulus. Liquid is taken 

from one end and positively discharged at the other end for every revolution [1]. In recent years, 

because of the development of petroleum well drill and oil extraction technology, RMP had further 

enhancement in the performance and other aspects. In order to adapt to many kinds of working 

conditions, in the structure, material and manufacturing of RMP have appeared new changes. The 

high efficiency RMP may prevent the drill rod blocking, eliminate the rock debris of well bottom, 

reduce the well drill cycle and cost, and thus it has deserved special attention in many nations. The 

power and depth of drill are increasing and the promotion ability is also strengthening. The high 

pressure RMP is also developing to high efficiency, high speed, high precision, large power, low 

cost, saving resource and high performance. Therefore enhancing the security, reliability and 

performance of high pressure and high efficiency RMP is the effective way for the well drill 

benefit.  

Crankshaft is a large and important component with a complex geometry in the RMP. It 

transforms the rotary motion into the line motion and endures very big alternation stress and torque. 

Its design, optimization and manufacturing affect the operating performance of RMP. Mechanics 

of materials is applied in traditional crankshaft calculation and the accuracy of calculated results 

is not high because of many simplifications and hypotheses. So the larger safety factor is adopted 

[2-4]. In order to avoid larger construction size and material waste, the loads of crankshaft should 

be extensively studied and new analysis tool should be applied. Dynamic load methods combined 

with FEM were used to analyse the crankshaft of combustion engine and reciprocating compressor 

[5-10]. The FEM was also successfully applied to scroll compressor design [11, 12]. Ye Xiao-Yan 

et al. built an analytic model for fatigue reliability of crankshaft [13]. The fatigue reliability of 

crankshaft model is analyzed in detail by using the radius vector method. Shi Wei-Dong et al. 

developed an application program which can realize design and analysis of crankshaft [14]. 

However for the crankshaft of RMP no complete model that includes all of the detailed dynamic 

computation has been published so far.  

http://en.wikipedia.org/wiki/Drilling_fluid
http://en.wikipedia.org/wiki/Drill_string
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This paper developed a detailed computation model of crankshaft. Through movement analysis 

and computation for various components, the loads of crankshaft were obtained. Then FEM was 

applied to three kinds of selected dangerous working conditions of crankshaft and satisfying 

results were obtained. The results are regarded as a theory basis to optimize the design of 

crankshaft and for the analysis of the structure dynamics of crankshaft. It enhances design 

initiative and accuracy, speeds up renewal speed, improves performance, saves manpower and 

cost, and offers a new method for the development of high pressure, large power, high efficiency 

and high performance RMP. 

2. The computation model and dynamic loading analysis 

 
a) The structure of RMP 

 
b) The fluid end 

 
c) Crankshaft 

Fig. 1. The structure of RMP 
1. RMP power end, 1-1. Big herringbone gear, 1-2. Crankshaft, 1-3. Connecting rod, 1-4. Crosshead,  

1-5. Shell, 1-6. Intermediate rod; 2. The fluid end, 2-1. Suction tube, 2-2. Discharge tube 

RMP is the key component in oil well engineering. The RMP consist of two main 

sub-assemblies, the fluid end and the power end. Fig. 1a) is the structure of RMP. It is made up of 

big herringbone gear, crankshaft, connecting rod, crosshead, shell, intermediate rod and the fluid 

end et al. Fig. 1b) is the fluid end. Fig. 1c) is the crankshaft. The power end is a typical crank-link 
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mechanism. The power is passed to connecting mechanism through big herringbone gear. The 

crankshaft is driven by big herringbone gear. Then rotary motion is transformed into line motion 

by the crankshaft. The liquid flow generated by this reciprocating motion is directed from the 

pump inlet (suction) to the pump outlet (discharge) by the selective operation of self-acting check 

valves located at the inlet and outlet of each displacement element. Suction and discharge power 

of the fluid end for oil well liquid and this makes oil well liquid circulation. The process is repeated 

continuously. In Table 1 are the basic parameters of RMP. 

Table 1. The basic parameters of RMP (the triplex reciprocating mud pump) 

Parameter Value 

Rated input power 1600 HP 

Rated frequency of stroke 120 min-1 

Piston stroke 305 mm 

Rated speed of driving shaft 518 r∙min-1 

The maximum working pressure 35 MPa 

Displacement 1.84 m3∙min-1 

The crankshaft experiences complex loading due to the motion of the connecting rod, which 

transforms loads to the crankshaft. The main objective of the computation model is to determine 

the accurate magnitude and direction of the loads that act on the crankshaft over the entire working 

cycle, which are then used in the FEM. Fig. 2a) is computation model of slider-crank mechanism 

with a single degree of freedom. Crankshaft angles 𝛼 = 0°~180°  and 𝛼 = 180°~360°  are 

defined as suction process and discharge process respectively. 

Fig. 2b) is forces acting on crosshead. Horizontal component 𝐹 of 𝑄 can be passed to piston 

rod. So horizontal component of crosshead 𝐹 is given by: 

𝐹 = {
𝑃𝑠 + 𝐺𝑐𝑓 − 𝐹|tan𝛽|𝑓 + 𝐼𝑔
𝑃𝑑 + 𝐺𝑐𝑓 − 𝐹|tan 𝛽|𝑓 + 𝐼𝑔

} ⇒

{
 
 

 
 𝑃𝑠 + 𝐺𝑐𝑓 + 𝐼𝑔

1 + |tan 𝛽|𝑓
    𝛼 = 0°~180°,

𝑃𝑑 + 𝐺𝑐𝑓 + 𝐼𝑔

1 + |tan𝛽|𝑓
  𝛼 = 180°~360°,

 (1) 

where 𝑃𝑠 is the force acting on piston rod under suction process. 𝑃𝑑 is the force acting on piston 

rod under discharge process. 𝐺𝑐 is the weight of crosshead assembly. 𝑓 is friction coefficient. 𝛽 is 

angle of 𝑄 and 𝐹. 𝐼𝑔 is inertia force.  

Connecting rod force 𝑄 is defined by the following expressions: 

𝑄 =
𝐹

𝜂 cos 𝛽
, (2) 

𝛽 = 𝑠𝑖𝑛−1(𝜆 sin 𝛼), (3) 

where 𝜂 is mechanical efficiency of connecting rod bearing. 𝜆 is the ratio of crank radius and 

connecting rod length. 

Fig. 2c) is the forces acting on crank. Components 𝑅 and 𝑇 of 𝑄 are defined as follows: 

{
 
 

 
 
𝑅 = 𝑄 cos(𝛼 + 𝛽),  𝑇 = −𝑄 sin(𝛼 + 𝛽), 0° ≤ 𝛼 + 𝛽 ≤ 90°,

𝑅 = −𝑄 [−cos(𝛼 + 𝛽)],  𝑇 = −𝑄 sin(𝛼 + 𝛽), 90° ≤ 𝛼 + 𝛽 ≤ 180°,

{
𝑅 = −𝑄 cos{180° − [(360° − 𝛼) + 𝛽]},

𝑇 = 𝑄 sin{180° − [(360° − 𝛼) + 𝛽]},
90° ≤ (360 − 𝛼) + 𝛽 ≤ 180°,

𝑅 = 𝑄 cos[(360° − 𝛼) + 𝛽] , 𝑇 = 𝑄 sin[(360° − 𝛼) + 𝛽] , 0° ≤ (360 − 𝛼) + 𝛽 ≤ 90°.

 (4) 

Axial force 𝑃𝑡 of the big herringbone gear is given by: 
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𝑃𝑡 = −
2𝑟

𝐷𝜂
(𝑇1 + 𝑇2 + 𝑇3), (5) 

where 𝑟 is crank radius. 𝐷 is cylinder diameter. 1, 2 and 3 represent different cranks respectively. 

Fig. 2d) is the crankshaft computation model. A and B are the bearing supports. Moving 

coordinates XYZ are fixed in crankshaft and rotate with it.  

 
a) Computation model of slider crank mechanism 

 
b) Forces acting on crosshead 

 
c) Forces acting on crank 

 
d) The crankshaft computation model 

Fig. 2. The resolution of forces and computation model 

Counterforces of A supporting are given by: 

𝑁𝐴𝑌 = −
𝑓 − 𝑎

𝑎
𝑇1 +

𝑓 − 𝑏

𝑓
{
1

2
[𝑇2 + √3(𝑅2 + 𝐼𝑟)]} +

𝑓 − 𝑒

𝑓
{
1

2
[𝑇3 − √3(𝑅3 + 𝐼𝑟)]} 

        +
3𝑓 − 𝑎 − 𝑏 − 𝑒

𝑓
𝐺 cos𝛼1 +

𝑓 − 𝑐

𝑓
𝐺0 cos 𝛼1 −

𝑓 − 𝑑

𝑓
𝑃𝑡 cos(𝛾 − 𝛼1), 

(6) 

𝑁𝐴𝑍 = −
𝑓 − 𝑎

𝑎
(𝑅1 + 𝐼𝑟) −

𝑓 − 𝑏

𝑓
{
1

2
[−𝑅2 − 𝐼𝑟 + √3𝑇2]} +

𝑓 − 𝑒

𝑓
{
1

2
[𝑅3 + 𝐼𝑟 + √3𝑇3]} 

        +
3𝑓 − 𝑎 − 𝑏 − 𝑒

𝑓
𝐺 sin 𝛼1 +

𝑓 − 𝑐

𝑓
𝐺0 sin 𝛼1 +

𝑓 − 𝑑

𝑓
𝑃𝑡 sin(𝛾 − 𝛼1). 

(7) 

Counterforces of B supporting are given by: 

𝑁𝐵𝑌 = −
𝑎

𝑓
𝑇1 +

𝑏

𝑓
{
1

2
[𝑇2 + √3(𝑅2 + 𝐼𝑟)]} +

𝑒

𝑓
{
1

2
[𝑇3 − √3(𝑅3 + 𝐼𝑟)]} 

        +
𝑎 + 𝑏 + 𝑒

𝑓
𝐺 cos 𝛼1 +

𝑐

𝑓
𝐺0 cos 𝛼1 −

𝑑

𝑓
𝑃𝑡 cos(𝛾 − 𝛼1), 

(8) 
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𝑁𝐵𝑍 = −
𝑎

𝑓
(𝑅1 + 𝐼𝑟) −

𝑏

𝑓
{
1

2
[−𝑅2 − 𝐼𝑟 + √3𝑇2]} +

𝑒

𝑓
{
1

2
[𝑅3 + 𝐼𝑟 + √3𝑇3]} 

        +
𝑎 + 𝑏 + 𝑒

𝑓
𝐺 sin 𝛼1 +

𝑐

𝑓
𝐺0 sin 𝛼1 +

𝑑

𝑓
𝑃𝑡 sin(𝛾 − 𝛼1), 

(9) 

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 and 𝑓 are distances. 𝐺0 is the weight of crankshaft excluding three eccentric 

wheels. 𝐺 is the weight of the eccentric wheel and connecting rod. 𝐼𝑟  is the centrifugal force of 𝐺. 

𝛾 is the angle of section III-III and acting plate of 𝑃𝑡. The positive value of calculation results 

indicates the same direction with coordinate axes. Negative value indicates opposite direction. 

Usually the crankshaft with large section change will cause large stress. So three sections I-I, 

II-II and III-III are selected as dangerous sections for stress analysis. 

(1) Internal force of I-I section 

Moving coordinate system 𝑋1𝑌1𝑍1 is fixed in crankshaft and rotates with crankshaft. Shearing 

force of I-I section is given by: 

{

𝑄𝑋1 = 0,
𝑄𝑌1 = 𝑄𝐴𝑌 ,
𝑄𝑍1 = 𝑄𝐴𝑍 .

 (10) 

The bending moment of I-I section is given by: 

{

𝑀𝑋1 = 0,
𝑀𝑌1 = 𝑁𝐴𝑍𝑆𝐼 ,
𝑀𝑍1 = 𝑁𝐴𝑌𝑆𝐼 .

 (11) 

(2) Internal force of II-II section 

Moving coordinate system 𝑋2𝑌2𝑍2  is fixed in crankshaft and rotates with crankshaft. The 

bending moment of II-II section is given by: 

{
 
 
 
 

 
 
 
 𝑀𝑋2 =

1

4
𝑅(𝑁𝐴𝑌 + √3𝑁𝐴𝑍) +

√3

4
𝑅[√3𝑇1 − (𝑅1 + 𝐼𝑟)] −

√3

2
𝑅 cos(30° + 𝛼1)𝐺,

𝑀𝑌2 =
1

2
𝑆𝐼𝐼(𝑁𝐴𝑌 + √3𝑁𝐴𝑍) −

1

2
(𝑆𝐼𝐼 − 𝑎)[𝑇1 − √3(𝑅1 + 𝐼𝑟)]

         −(𝑆𝐼𝐼 − 𝑎) sin(30° + 𝛼1) 𝐺 ,

𝑀𝑍2 =
1

2
𝑆𝐼𝐼(√3𝑁𝐴𝑌 − 𝑁𝐴𝑍) +

1

2
(𝑆𝐼𝐼 − 𝑎)[√3𝑇1 − (𝑅1 + 𝐼𝑟)]

         −(𝑆𝐼𝐼 − 𝑎) cos(30° + 𝛼1)𝐺 .

 (12) 

(3) Internal force of III-III section 

Moving coordinate system 𝑋3𝑌3𝑍3 is fixed in crankshaft and rotates with crankshaft. Shearing 

force of III-III section is given by: 

{

𝑄𝑋3 = 0,
𝑄𝑌3 = 𝑄𝐵𝑌 ,
𝑄𝑍3 = 𝑄𝐵𝑍 .

 (13) 

The bending moment of III-III section is given by: 

{

𝑀𝑋3 = 0,

𝑀𝑌3 = 𝑁𝐵𝑍(𝑓 − 𝑆𝐼𝐼𝐼),

𝑀𝑍3 = 𝑁𝐵𝑌(𝑓 − 𝑆𝐼𝐼𝐼).
 (14) 
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a) The forces of crank throw I 

 
b) The forces of crank throw II 

 
c) The forces of crank throw III 

Fig. 3. The forces of piston rod, connecting rod and crank 

 
a) Tangential force of big herringbone gear 

 
b) Counterforces of A and B supports 

 
c) Torque of crankshaft 

 
d) Bending moments of crankshaft 

Fig. 4. The loads of crankshaft assembly 
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The load computation of entire crankshaft model is based on 3 pistons working ability. 

According to the entire RMP working parameters, the loads of different parts can be gotten at 

different positions. Through the loads of crosshead, connecting rod, piston rod et al. and inertia 

force analysis, the final crankshaft load results were obtained. Fig. 3a), b) and c) show the forces 

variation of piston rod, connecting rod and crank. As can be seen in Fig. 3a), 𝐹 is very small from 

0° to 180° because there is the inhalation process of piston. As degree increases it is very big and 

declines during the range of 180° to 360°. 𝑄 has the same discipline with piston rod. 𝑅 and 𝑇 are 

very small from 0° to 180°. 𝑅 changes from maximum pull to maximum pressure in the range of 

180° to 360° with cosine change. 𝑇 first decreases, then increases according to sine change. For 

the three crank throws, the forces are of the same change, but they have different phases. Fig. 4a) 

is tangential force variation of big herringbone gear. 𝑃𝑡 repeats the same cycle every 60°. The 

maximum 𝑃𝑡 is about 1.8×105 N. The minimum 𝑃𝑡 is about 1.4×105 N. Fig. 4b) is counterforces 

variation of A and B supports. When 𝛼1 =  30°, the maximum 𝑁𝐵  of B supporting is about 

7.2×105 N. When 𝛼1 = 245°, the maximum 𝑁𝐴 of A supporting is about 7.3×105 N. Fig. 4c) is 

torque of crankshaft. Fig. 4d) is the total bending moment variation of crankshaft for three 

dangerous sections. The loads results are the base of FEM analysis. 

3. FEM stress analysis of crankshaft 

3.1. The FEM analysis 

The Pro/E is used as engineering tool to implement the geometry generation. A virtual 

crankshaft model is developed according to the inherent characteristics of RMP. Solid model has 

emerged as a superb tool for component design, especially when there is added value in linking 

geometry to various forms of structure, thermal, kinematic, and dynamic, et al. It is more important 

that solid model can be used as a powerful tool to bridge the gap between the designer and the 

manufacturing engineer. The created solid model is the foundation for FEM analysis. In Table 2 

are the crankshaft material properties. 

Table 2. Crankshaft material properties 

Material properties ZG25MnVCu 

Elasticity modulus 𝐸 175 GPa 

Poisson ratio 𝜇 0.3 

Density 𝜌 7.85×10-6 kg/mm3 

Expansion coefficient 𝛼 1.33×10-5 /°C 

Heat transfer coefficient 𝜆 0.0498 W/mm °C 

Specific heat 𝐶 470 J/kg °C 

Tensile strength 𝛿𝑏 509 MPa 

Fatigue strength 𝛿−1 313 MPa 

Since the crankshaft has a complex geometry for analysis, FEM stress analysis have been 

considered to give an accurate and reasonable solution. Based on the obtained loads and the three 

dangerous sections analysis, the three most unfavorable operating modes were selected. The solid 

model of crankshaft was input to ANSYS. The proper boundary conditions were appointed 

according to the structure and motion characteristics. The stress distribution of the crankshaft was 

computed through FEM analysis under three kinds of dangerous states: 𝛼1 = 105°, 𝛼1 = 300° and 

𝛼1 = 360° . The maximum main stress, the minimum main stress and the Mises stress of  

𝛼1 = 300° were firstly analyzed. 

Fig. 5a) is the restraints of crankshaft. Supporting is simplified into cylindrical hinge restriction. 

In order to constrain the axis movement, the end section of B supporting is fixed. Because the 

model can’t revolve, the loads of three crank throws and big herringbone gear are decomposed in 

the current reference frame and added on the solid analysis model according to coordinate axis. 
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Loads and moments of big herringbone gear and three crank throws are defined. Bearing force 

and moment are added on corresponding crank throws according to different load style. The 

Fig. 5b) and c) are moments and forces acting on crankshaft under 𝛼1 = 300°. 

 

a) The constrains of crankshaft 
 

b) The moments of crankshaft 

 
c) The forces of crankshaft 

Fig. 5. The loads acting on crankshaft under 𝛼1 = 300° 

3.2. Analysis and discussion of computed results 

Using the FEM analysis the stress distributing of crankshaft due to working loads was  

obtained, which is useful for improving the quality of optimization, manufacturing and assembly 

accuracy. The computed results of the maximum main stress, the mininimum main stress and the 

Mises stress under 𝛼1 = 300° are shown in Fig. 6. The maximum pull stress 93.7 MPa appears as 

close to crankshaft right end (the maximum is marked in the Fig. 6a)). The other side of crankshaft 

bearing stress is 45 MPa. The maximum stress of two positions is caused by bend deformation. 

The bend deformation is restricted because the cylindrical hinge restraints are set at the two ends 

of bearing and thus it causes high bend stress. The stress in middle crankshaft which is caused by 

bend deformation and torsion is not high because of bigger section area. Fig. 6b) is the minimum 

main stress distribution of crankshaft. Similar with the maximum stress, the minimum main stress 

which is caused by bend is high at the two ends of bearing. The maximum pressure 

stress -83.55 MPa appears at the right flank root of III crank throw (the minimum is marked in 

Fig. 6b)). Fig. 6c) is the Mises stress distribution of crankshaft. The maximum Mises stress 

75.88 MPa appears at right root of bearing (the maximum is marked in Fig. 6c)), and where is also 

the maximum pull stress position. Under 𝛼1 = 300°, the stress of entire crankshaft is extremely 

non-uniform and the stress of minority spots is high. The maximum pull stress is 93.7 MPa. The 

maximum pressure is -83.55 MPa and the maximum Mises stress is 75.88 MPa. Using the same 

method the crankshaft stress was calculated under 𝛼1 = 105° and 𝛼1 = 360°.  



1020. DYNAMIC LOADING AND STRESS ANALYSIS ON CRANKSHAFT OF RECIPROCATING MUD PUMP.  

BIN PENG, HONGSHENG ZHANG 

1056  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. JUNE 2013. VOLUME 15, ISSUE 2. ISSN 1392-8716  

 
a) The maximum main stress distribution 

 
b) The minimum main stress distribution 

 
c) The Mises stress distribution 

Fig. 6. The stress distribution of crankshaft under 𝛼1 = 300° 

 
a) The maximum main stress distribution 

 
b) The minimum main stress distribution 

 
c) The Mises stress distribution 

Fig. 7. The stress distribution of crankshaft under 𝛼1 = 105° 
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a) The maximum main stress distribution 

 
b) The minimum main stress distribution 

 
c) The Mises stress distribution 

Fig. 8. The stress distribution of crankshaft under 𝛼1 = 360° 

Fig. 7 is the stress distribution of crankshaft under 𝛼1 = 105°. Under 𝛼1 = 105° the entire 

crankshaft stress is higher, the maximum pull stress 109 MPa appears as close to crankshaft right 

end (the maximum is marked in the Fig. 7a)). The maximum pressure stress is -110 MPa (the 

maximum is marked in the Fig. 7b)), and the maximum Mises stress is 97.4 MPa (the maximum 

is marked in Fig. 7c)). The maximum stress is caused by bend deformation. The bend deformation 

is restricted because the cylindrical hinge restraints are set at the two ends of bearing and thus it 

causes high bend stress. 

Fig. 8 is the stress distribution of crankshaft under 𝛼1 = 360°. Under 𝛼1 = 360° the entire 

crankshaft stress is not high. The maximum pull is 67 MPa. The maximum pressure is -68 MPa 

and the maximum Mises stress is 53 MPa. 

The stress has the almost same distribution for the three kinds of operating modes. The 

maximum stress is located in the fillet region because of high stress gradients in the location which 

result in high stress concentration factors, and the location belongs to the dangerous position in 

most of the broken crankshafts. But all stresses are lower than the bend limit and permission stress 

of material. Finally the accurate analysis results provide the theory basis for structure design and 

the material re-choice of the crankshaft. Through FEM analysis computation the weight of 

crankshaft is reduced above 10 % based on the original foundation. 

4. Conclusions 

(1) Computation model of crankshaft was built. The load results of the three dangerous 

sections were obtained through dynamics loading analysis of components. 

(2) Three kinds of dangerous operating modes: 𝛼1 = 105°, 𝛼1 = 300° and 𝛼1 = 360° were 

computed using FEM stress analysis. The maximum main stress, the minimum main stress and 

the Mises stress distribution were obtained. The maximum main stress is 109 MPa. The minimum 
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main stress is -110 MPa. The maximum Mises stress is 97.4 MPa. But all of those stresses are 

lower than the bend limit and permission stress of material. The stress induced by bending moment 

is almost 4 times than by torsional load. 

(3) Critical locations on the crankshaft are located on the fillet areas because of high stress 

gradients in these locations which result in high stress concentration factors. 

(4) The FEM analysis was effectively applied to design crankshaft. The analysis results of the 

stress distribution provide the theory basis for the intelligent optimization design of RMP. 

Acknowledgments 

This work was supported by National Natural Science Foundation of China (Grant 

No. 51275226), Natural Science Foundation of Zhejiang Province (Grant No. LY12E05010), 

Scientific Research Foundation for the Returned Overseas Chinese Scholars of Gansu Province 

(Grant No. 1002ZSB114), Natural Science Foundation of Gansu Province (Grant 

No. 1112RJZA003), Fundamental Research Funds for the Gansu Province Universities (Grant 

No. 1202ZTC057) of China. 

References 

[1] Reciprocating Pump Design Compilation Group. Reciprocating Pump Design, China Machine Press, 

Beijing, 1987, (in Chinese). 

[2] Huang Shiqiao Analysis method of dynamics on reciprocating pump. Chemical Engineering & 

Machinery, Vol. 15, No. 5, 1988, p. 272-275, (in Chinese).  

[3] Zhu Yong-You, Ye Yong-Biao, Zhou Rong, Zhang Wei The kinematics and dynamics analysis of 

sludge pump. General Machine, Vol. 5, 2005, p. 65-67, (in Chinese). 

[4] Feng Ping-Fa, Sheng Li, Wu Zhi-Jun, Yu Ding-Wen Study on the dynamic load and mechanical 

property of the plunger pump crankshaft. Machinery Design & Manufacture, Vol. 5, 2007, p. 155-157, 

(in Chinese).  

[5] Lee H. J. Dynamics and probabilistic fatigue analysis schemes for high-speed press machines. 

Computers & Structures, Vol. 50, No. 1, 1994, p. 11-19. 

[6] Xu Wei-Guo, Huang Rong-Hua, Zhao Miao-Sen, Zuo Zhao-Feng, Wang Xing-Guang New 

calculation method of crankshaft fatigue strength. Chinese Internal Combustion Engine Engineering, 

Vol. 25, No. 5, 2004, p. 51-55, (in Chinese). 

[7] Zhou Xun, Yu Xiaoli, Li Ying Investigation for the residual strength degeneration regular of 

crankshaft serving on steady fatigue load. Chinese Journal of Mechanical Engineering, Vol. 42, No. 4, 

2006, p. 145-151, (in Chinese). 

[8] Montazersadgh F., Fatemi A. Dynamic load and stress analysis of a crankshaft. SAE Technical Paper 

2007-01-0258, 2007, p. 1-8. 

[9] J. A. Becerra, F. J. Jimenez, M. Torres, D. T. Sanchez, E. Carvajal Failure analysis of reciprocating 

compressor crankshafts. Engineering Failure Analysis, Vol. 18, No. 2, 2011, p. 735-746. 

[10] Jian Meng, Yongqi Liu, Ruixiang Liu Finite element analysis of 4-cylinder diesel crankshaft. I. J. 

Image, Graphics and Signal Processing, Vol. 3, No. 5, 2011, p. 22-29. 
[11] Z. Jiang, D. K. Harrison, K. Cheng Computer-aided design and manufacturing of scroll compressors. 

Journal of Materials Processing Technology, Vol. 138, No. 1, 2003, p. 145-151. 

[12] Chiachin Lin, Yuchoung Chang, Kunyi Liang, Chinghua Hung Temperature and thermal 

deformation analysis on scrolls of scroll compressor. Applied Thermal Engineering, Vol. 25, 

No. 11-12, 2005, p. 1724-1739. 

[13] Ye Xiao-Yan, Jiang Xiao-Ping, Xu Jian-Qiang, Shi Wei-Dong Fatigue reliability analysis on 

crankshaft of reciprocating pump. Chinese Journal of Mechanical Engineering, Vol. 44, No. 10, 2008, 

p. 272-276, (in Chinese).  

[14] Shi Wei-Dong, Jiang Xiao-Ping, Xu Jian-Qiang, Ye Xiao-Yan, Hu Jing-Ning Development and 

application of design program for crankshaft of reciprocating pumps. Journal of Jiangsu University, 

Vol. 30, No. 3, 2009, p. 279-283, (in Chinese). 

http://www.sciencedirect.com/science/journal/13506307

