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Abstract. A real-time diagnosis of hydraulic pumps is very crucial for the reliable operation of 

hydraulic systems. The main purpose of this study is to propose a fault diagnosis approach for 

hydraulic systems based on the empirical mode decomposition (EMD), autoregressive (AR) 

model, singular value decomposition (SVD), and Mahalanobis–Taguchi system (MTS). The AR 

model effectively extracts the fault feature of vibration signals. However, it can only be applied 

to stationary signals; the fault vibration signals of hydraulic pumps are non-stationary. To address 

this problem, the EMD method is used as a pretreatment step to decompose the non-stationary 

vibration signals of hydraulic pumps. First, the vibration signals of hydraulic pumps are 

decomposed into a finite number of stationary intrinsic mode functions (IMF). The AR model of 

each IMF component is established. The AR parameters and the remnant’s variance are regarded 

as the initial feature vector matrices. Third, the singular values are obtained by applying the SVD 

to the initial feature vector matrices. Finally, these values serve as the fault feature vectors to be 

entered to the MTS, thereby classifying the fault pattern of the hydraulic pumps. The Taguchi 

methods are employed to reduce the redundant features and extract the principal components. 

Experimental analysis results indicate that this method can effectively accomplish the fault 

diagnosis of hydraulic pumps. 

Keywords: hydraulic pump, fault diagnosis, empirical mode decomposition, AR model, singular 

value decomposition, Mahalanobis–Taguchi system. 

1. Introduction 

A hydraulic pump is the heart of a hydraulic system. It reflects whether the operation of the 

entire system is normal or not. Therefore, hydraulic pumps should be able to process condition 

monitoring and fault diagnosis. Hydraulic pumps under an abnormal state are normally 

accompanied with vibration changes. Most mechanical faults are reflected by vibration. Thus, 

vibration diagnosis is important in this field and is also the foremost topic of interest for local and 

foreign researchers [1, 2]. In the fault diagnosis of hydraulic pumps, fault signals passed through 

the pump source outlet are often drowned by interference signals because of complex fault 

mechanisms and strong buzz during the signal extraction process. The effective fault 

characteristics are difficult to extract using conventional signal processing methods. 

The hydraulic pump fault diagnosis process basically consists of three steps: (1) collection of 

the hydraulic pump vibration signals; (2) extraction of the fault features; and (3) pattern 

recognition and fault diagnosis. Steps 2 and 3 are the key steps in the fault diagnosis of hydraulic 

pumps. Considering that the fault vibration signals of hydraulic pumps are non-stationary, 

determining how to obtain feature vectors from these signals for fault diagnosis is important. 

Traditional diagnosis techniques obtain these vectors from the waveforms of the fault vibration 

signals in the time or frequency domain, and then construct the criterion functions to determine 

the condition of hydraulic pumps. However, considering that the non-linear factors have distinct 

effects on the vibration signals because of the complexity of the structure and working condition 

of hydraulic pumps, obtaining an accurate evaluation of the fault condition of hydraulic pumps 

only through time or frequency domain analyses is difficult.  
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In the timing analysis field, the autoregressive (AR) model is the most basic and most widely 

used time-series model, but it is mainly used in stationary processes. The AR model is a time 

sequence analysis method with mature algorithms whose parameters comprise important 

information regarding the system condition. An accurate AR model can reflect the characteristics 

of a dynamic system. The autoregression parameters of the AR model are also very sensitive to 

the condition variation [3, 4]. The vibration signals of hydraulic pumps with faults have shock 

characteristics. The AR model can simulate transients, and the frequency response function of 

these pumps can be calculated from the auto-regression parameters of the AR model. Therefore, 

these parameters can be effectively used to analyze the condition variation of dynamic systems. 

The most apparent advantage of the AR model is that faults can be identified by the AR model 

parameters after the AR model of the vibration signals is established without constructing 

mathematical models and studying the fault mechanisms. The AR model has also been 

successfully applied to fault diagnoses in many cases. When the AR model is applied to non-

stationary signals, estimating the autoregression parameters by the least squares method or the 

Yule–Walker equation method is difficult; thus, the analysis results are inaccurate if the AR model 

is directly applied to non-stationary hydraulic pump vibration signals. 

Signals generated by hydraulic pump failures traditionally often contain a large number of 

non-stationary components. The global frequency domain information can be obtained by 

performing a Fourier transform on the signals containing non-stationary components, but the fault 

information is difficult to be effectively extracted from a spectrum overwhelmed with noise. The 

local information of non-stationary signals can be extracted by wavelet transform. However, the 

high frequency information is lost because of the inability to decompose the high-frequency part; 

thus, the fault characteristics of high frequencies is difficult to be extracted. The wavelet packet 

transform compensates for the inability of the wavelet transform to decompose high frequencies. 

The wavelet packet transform can perform a complete multi-level decomposition in the full-band 

signal, coupled with good time-frequency characteristics. However, for some mechanical systems, 

this approach cannot obtain a vibration signal feature extraction with a high signal-to-noise ratio 

(SNR). 

To get rid of the disadvantages of the feature extraction methods above, a self-adaptive method, 

namely, empirical mode decomposition (EMD), for nonlinear and non-stationary signals was 

proposed by Huang [5, 6]. In the present study, an effective method based on the EMD and AR 

model is presented to extract feature vectors. EMD is based on the local signal characteristics and 

could decompose complicated signals into a number of intrinsic mode functions (IMFs). The 

number of decomposed IMFs is usually finite, and the IMF components generated by EMD can 

reflect the actual information of the original signal. More importantly, the generated IMF 

components are stationary; thus, the AR model of each IMF component can be established. The 

initial feature vectors of the fault vibration signals of hydraulic pumps are extracted with the 

combination of EMD and the AR model. The feature vectors are composed of the autoregression 

parameters and remnant’s variance of the AR model. The feature vector matrices are decomposed 

to obtain the singular value by singular value decomposition (SVD). 

The Mahalanobis–Taguchi system (MTS) is a multivariate pattern recognition tool that 

provides the basis to combine all the pertinent information about a system into a single metric 

using the Mahalanobis distance (MD). It also presents a systematic way of determining the key 

features required for analysis based on the Taguchi methods. MTS is widely used in various 

diagnostic applications that deal with data classification. In MTS, the MD is used to determine the 

degree of abnormality, thereby identifying the working condition and fault patterns of hydraulic 

pumps. The Taguchi methods use orthogonal arrays (OAs) and SNRs. These methods are also 

used to reduce the redundant features and extract the principal components. The MD, introduced 

by P. C. Mahalanobis in 1936 [7], is a multivariate generalized measure used to determine the 

distance of a data point to the mean of a group. The MD is measured in terms of the standard 

deviations from the mean of the samples and provides a statistical measure of how well the 
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unknown data set matches with the ideal one. The advantage of the MD is that it is sensitive to the 

intervariable changes in the reference data. Therefore, it has traditionally been used to classify 

observations into different groups for diagnoses [8]. 

The benefits of MTS as a pattern recognition and data classification tool are summarized as 

follows. 

• It is a robust methodology insensitive to variations in multidimensional systems. 

• It can handle many different types of data sets and effectively consolidates these data into a 

useful metric. 

• Implementation of MTS requires limited knowledge of statistics. 

• It typically relies on simple arithmetic, contextual knowledge, and intuition. 

• Its success has been demonstrated in various practical applications. 

2. Methodologies for hydraulic pump fault diagnosis based on EMD-AR and MTS 

2.1. EMD method 

Huang et al. [5] developed EMD in 1998. The EMD method is developed based on the simple 

assumption that any signal consists of different simple intrinsic modes of oscillations. Each linear 

or non-linear mode will have the same number of extrema and zero-crossings. Only one extremum 

exists between successive zero-crossings. Each mode should be independent of the others. In this 

way, each signal could be decomposed into a number of IMFs, each of which must satisfy the 

following definitions [9]: (1) In the whole data set, the number of extrema and the number of zero-

crossings must either be equal or differ by at most one; (2) At any point, the mean value of the 

envelope defined by the local maxima and the envelope defined by the local minima is zero. 

An IMF represents a simple oscillatory mode compared with the simple harmonic function. 

With the definition, any signal 𝑥(𝑡) can be decomposed as follows: 

Step 1: Identify all the local extrema, and then connect all the local maxima by a cubic spline 

line to give the upper envelope. 

Step 2: Repeat this procedure for the local minima to produce the lower envelope. Between 

them, the upper and lower envelopes should cover all the data. 

Step 3: The mean of the upper and lower envelope values is designated as 𝑚1(𝑡) ; the 

difference between the signal 𝑥(𝑡) and 𝑚1(𝑡) is the first component ℎ1(𝑡): 

𝑥(𝑡) − 𝑚1(𝑡) = ℎ1(𝑡). (1) 

Ideally, if ℎ1(𝑡) is an IMF, then ℎ1(𝑡) is the first component of 𝑥(𝑡). 

An equivalent set of two first-order non-autonomous equations is as follows:  

Step 4: If ℎ1(𝑡) is not an IMF, ℎ1(𝑡) is treated as the original signal and steps 1, 2 and 3 are 

repeated; then: 

ℎ1(𝑡) − 𝑚11(𝑡) = ℎ11(𝑡). (2) 

After repeated sifting, i.e., up to 𝑘 times, ℎ1𝑘(𝑡) becomes an IMF, that is: 

ℎ1(𝑘−1)(𝑡) − 𝑚1𝑘(𝑡) = ℎ1𝑘(𝑡). (3) 

Then, it is designated as:  

𝑐1(𝑡) = ℎ1𝑘(𝑡). (4) 

The first IMF component from the original data 𝑐1(𝑡) should contain the finest scale or the 

shortest period component of the signal. 
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Step 5: Separating 𝑐1(𝑡) from 𝑥(𝑡), we get: 

𝑟1(𝑡) = 𝑥(𝑡) − 𝑐1(𝑡). (5) 

𝑟1(𝑡) is treated as the original data, and the above processes are repeated; therefore, the second 

IMF component 𝑐2(𝑡) of 𝑥(𝑡) can be obtained. Repeating the process described above 𝑛 times, 

𝑛-IMFs of signal 𝑥(𝑡) can be obtained. Then: 

𝑟1(𝑡) − 𝑐2(𝑡) = 𝑟2(𝑡), 
… 

𝑟𝑛−1(𝑡) − 𝑐𝑛(𝑡) = 𝑟𝑛(𝑡). 
(6) 

The decomposition process can be stopped when 𝑟𝑛(𝑡) becomes a monotonic function from 

which no more IMFs can be extracted. 

Using this procedure, any signal can be decomposed. We finally obtain: 

𝑥(𝑡) = ∑ 𝑐𝑗(𝑡) + 𝑟𝑛

𝑛

𝑗=1

(𝑡). (7) 

Thus, the signal is decomposed into 𝑛-empirical modes and a residue 𝑟𝑛(𝑡), which is the mean 

trend of 𝑥(𝑡) . Each IMF 𝑐1(𝑡), 𝑐2(𝑡), … , 𝑐𝑛(𝑡)  contains lower-frequency oscillations than the 

prior-extracted one, while 𝑟𝑛(𝑡) represents the central tendency of signal 𝑥(𝑡).  

EMD has been shown to be a fast, effective, self-adaptive method for nonlinear and non-

stationary time series analysis, but there is still a drawback worth noting: the end effect, whereby 

distortion appears at the end of the signal in the decomposition process. In this paper, we employ 

the mirror periodic extending method (MPM) to solve this problem. 

2.2. MTS 

The MTS starts by collecting data on normal observations. The MD is calculated using certain 

characteristics to determine whether the MD has the ability to differentiate a normal group from 

an abnormal group. If the MD cannot identify the normal group using those particular 

characteristics, then a new combination of characteristics are needed to be examined. When the 

correct set of characteristics is determined, the Taguchi methods are employed to evaluate the 

effect of each characteristic. If possible, dimensionality is reduced by eliminating those 

characteristics that do not add value to the analysis. The MTS consists of the following three stages 

[8, 10]. 

2.2.1. Stage 1: Construction of the Mahalanobis Space (MS) 

Step 1: Calculate the mean for each characteristic in the normal dataset as: 

�̅�𝑖 =
∑ 𝑥𝑖𝑗

𝑛

𝑗=1

𝑛
. (8) 

Step 2: Calculate the standard deviation 𝑠𝑖, for each characteristic (𝑖 = 1, 2, 3, …): 

𝑠𝑖 = √
∑ (𝑋𝑖𝑗 − �̅�𝑖)

2𝑛

𝑗=1

𝑛 − 1
. (9) 
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Step 3: Normalize each characteristic. Form the normalized data matrix 𝑍 , and take its 

transpose 𝑍𝑖𝑗, where: 

𝑍𝑖𝑗 =
(𝑋𝑖𝑗 − �̅�𝑖)

𝑠𝑖

. (10) 

Step 4: Verify that the mean of the normalized data is zero: 

𝑧�̅� =
∑ 𝑍𝑖𝑗

𝑛
𝑗=1

𝑛
= 0. (11) 

Step 5: Verify that the standard deviation of the normalized data is one: 

𝑠𝑧 = √
∑ (𝑍𝑖𝑗 − 𝑧𝑖

−
)2𝑛

𝑗=1

𝑛 − 1
= 1. (12) 

Step 6: Construct the correlation matrix 𝐶 , for the normalized data. Calculate the matrix 

elements 𝑐𝑖𝑗 , as follows: 

𝑐𝑖𝑗 =
∑ (𝑍𝑖𝑚𝑍𝑗𝑚)𝑛

𝑚=1

𝑛 − 1
. (13) 

Step 7: Calculate the inverse of the correlation matrix 𝑐−1. 

Step 8: Calculate MD as: 

𝑀𝐷𝑗 =
1

𝑘
𝑍𝑖𝑗

𝑇 𝐶−1𝑍𝑖𝑗 , (14) 

where 𝑥𝑖𝑗  is the 𝑖𝑡ℎ characteristic in the 𝑗𝑡ℎ observation, 𝑛 is the number of observations, 𝑠𝑖 is the 

standard deviation of the 𝑖𝑡ℎ characteristic, 𝑍𝑖𝑗 is the normalized value of the 𝑖𝑡ℎ characteristic in 

the 𝑗𝑡ℎ  observations, 𝑠𝑧  is the standard deviation of the normalized values, 𝑐 is the correlation 

matrix 𝑐−1 is the inverse of the correlation matrix, 𝑀𝐷𝑗 is the MD for the 𝑗𝑡ℎ observation, and 𝑘 

is the number of characteristics [11]. 

2.2.2. Stage 2: Identification of the useful characteristics 

The useful characteristics are determined using OAs and SNRs. An OA is a table that lists the 

set of characteristics. It allows the effects of the presence or absence of a characteristic to be tested. 

The size of the OA is determined by the number of characteristics and the levels that they can take. 

In the MTS, characteristics in the OA have two levels. Level-1 represents the presence of a 

characteristic, and Level-2 represents the absence of a characteristic. For the abnormal cases, the 

MD values are calculated using the combination of the characteristics determined by the OA. The 

larger-the-signal-the-better SNR is calculated as follows: 

𝜂𝑞 = −10log [
1

𝑛
∑

1

𝑀𝐷𝑗

𝑛

𝑗=1

], (15) 

where 𝜂𝑞 is the SNR for the 𝑞𝑡ℎ row of the OA, and n is the sample size of each abnormality under 

the consideration of the Taguchi analysis. By obtaining the average SNRs at Level-1 (𝑡1) and 
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Level-2 (𝑡2)  of each characteristic, the Gain in SNR can be calculated as 𝑡1 − 𝑡2 . If  

𝑡1 − 𝑡2 > 0, it means this characteristic is useful; otherwise, it is useless or even harmful for 

diagnosis. Thus, characteristics with positive gain are selected for the detection of abnormalities 

and the rest are discarded. 

2.2.3. Stage 3: Decision making 

In the final stage, the application under investigation is monitored by collecting data using the 

MS. The MDs are calculated, and if MD >> 1, the application exhibits an abnormal behavior and 

appropriate corrective actions are needed to be taken. If MD ≤ 1, then the conditions are normal 

[11]. 

2.3. Diagnosis approach for hydraulic pump 

First, the fault vibration signal of the hydraulic pump 𝑋𝑡, is decomposed by EMD into 𝑛 IMFs, 

𝑖𝑚𝑓1, 𝑖𝑚𝑓2, . . . , 𝑖𝑚𝑓𝑛. Each component represents a different characteristic information. After the 

EMD method is applied to 𝑋𝑡 , the IMFs can completely combine the characteristics of 𝑋𝑡  

Therefore, the characteristics of 𝑋𝑡 can be obtained by extracting the characteristics of 

𝑖𝑚𝑓1, 𝑖𝑚𝑓2, . . . , 𝑖𝑚𝑓𝑛 [9]. 

Second, the following AR model, 𝐴𝑅(𝑚), is established for each IMF component as: 

𝑋𝑖(𝑡) = ∑ 𝜑𝑖𝑘𝑋𝑖(𝑡 − 𝑘)

𝑚

𝑘=1

+ 𝑐𝑖(𝑡), (16) 

where 𝜑𝑖𝑘  (𝑘 = 1,2, . . . , 𝑚) represent the parameters of the model, AR indicates an AR model of 

order 𝑚, 𝑐𝑖(𝑡) denotes the remnant of the model and is a white-noise sequence whose mean value 

is zero and variance is 𝜎𝑖
2 . The parameters 𝜑𝑖𝑘  (𝑘 = 1,2, . . . , 𝑚)  can reflect the inherent 

characteristics of a hydraulic pump vibrating system. The variance of the remnant 𝜎𝑖
2 is closely 

related with the output characteristics of the system. 𝜑𝑖𝑘  (𝑘 = 1,2, . . . , 𝑚) and 𝜎𝑖
2 can be chosen 

as the initial feature vectors 𝐴𝑖 = [𝜑𝑖1, 𝜑𝑖2, . . . , 𝜑𝑖𝑚 , 𝜎𝑖
2]. 

The singular values of the feature vector matrix are calculated to extract the feature vectors. 

Based on matrix theory, the singular value of the matrix is the inherent characteristic of the matrix 

and has good stability, that is, when the matrix elements encounter small changes, the matrix 

singular value only slightly changes. Thus, the singular values of the feature vector matrix 

obtained by AR can be extracted as mechanical component characteristics. However, the SVD 

also has its disadvantages, that is, for a space reconstruction in the time series, embedding 

dimension and delay decisions have no specific theoretical basis. The initial feature vector matrix 

obtained by AR could avoid this problem. Accordingly, the initial feature vector 𝐴𝑖, from 𝑛 IMF 

components constitutes the initial feature vector matrix 𝐴 , where 𝐴 = (𝐴1, 𝐴2, . . . , 𝐴𝑁)𝑇 . 𝐴  is 

decomposed by SVD to extract the singular value 𝜎1, 𝜎2, . . . , 𝜎𝑁 , thereby extracting the fault 

feature vectors. The criterion of condition identification is the MD. The proposed diagnosis 

method is illustrated in Fig. 1. 

The fault diagnosis method for the hydraulic pump is as follows: 

(1) Acquire 𝑛 vibration signal samples at a certain sampling frequency 𝑓𝑠, under each of the 

following conditions: hydraulic pump is normal, with valve plate wear, and with slipper loosing. 

The 3𝑛 signals are taken as the samples. 

(2) Each signal is decomposed by EMD, and finite number of IMF components can be obtained. 

(3) Normalize each IMF component to obtain a new component to eliminate the effect of the 

signal amplitude on the variance of the remnant 𝜎𝑖
2: 



991. APPLICATION OF EMD-AR AND MTS FOR HYDRAULIC PUMP FAULT DIAGNOSIS.  

LU CHEN, HU JIAMENG, LIU HONGMEI 

  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. JUNE 2013. VOLUME 15, ISSUE 2. ISSN 1392-8716 767 

�̂�𝑖(𝑡) =
𝑐𝑖(𝑡)

√∫ 𝑐𝑖
2(𝑡)

∞

−∞
𝑑𝑡

. 
(17) 

 
Fig. 1. Flow chart of the proposed method 

(4) Construct the AR model for the normalized component. Determine the order 𝑚, of the 

model using the final prediction error (FPE) criterion and estimate the AR parameters 

𝜑𝑖𝑘  (𝑘 = 1,2, … , 𝑚) and the remnant’s variance 𝜎𝑖
2 by the minimum squares method, where 𝜑𝑖𝑘 

denotes the 𝑘𝑡ℎ  AR parameters of the 𝑖𝑡ℎ  IMF component. 𝜑𝑖𝑘  (𝑘 = 1,2, … , 𝑚) and 𝜎𝑖
2  can be 

determined. These values can be combined to construct the initial feature vector of the 𝑖𝑡ℎ IMF 

component as follows: 

𝐴𝑗,𝑖 = [𝜑𝑥,𝑖1, 𝜑𝑥,𝑖1, . . . , 𝜑𝑥,𝑖1, 𝜎𝑥,𝑖
2 ], (18) 

where 𝑗 = 1, 2, 3 denotes the normal condition, condition with valve plate wear, and condition 

with slipper loosing. 

(5) Each sample in all conditions is decomposed by SVD to obtain 𝑚 + 1 singular values. 

Formally, the SVD of an 𝑚 × 𝑛 real or complex matrix 𝐌 is a factorization of the form: 

𝐌 = 𝑈∑𝐕∗, (19) 

where 𝑈 is an 𝑚 × 𝑚 real or complex unitary matrix, ∑ is an 𝑚 × 𝑛 rectangular diagonal matrix 

with nonnegative real numbers on the diagonal, and 𝐕∗ (the onjugate transpose of 𝐕) is an 𝑛 × 𝑛 

real or complex unitary matrix. The diagonal entries ∑𝑖,𝑖 of ∑ are known as the singular values of 

𝐌. 

(6) Determine the MD between the testing data and the benchmark space composed of the 

normal training data as follows: 

http://en.wikipedia.org/wiki/Rectangular_diagonal_matrix
http://en.wikipedia.org/wiki/Singular_value
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𝑀𝐷𝑗 =
1

𝑘
𝑥𝑗

′ • 𝐑−1 • 𝑥𝑗 , (20) 

where 𝐑−1 is the inverse of the correlation matrix 𝐑, 𝑀𝐷𝑗  is the MD for the 𝑗𝑡ℎ observation, and 

𝑘 is the number of characteristics. 

(7) Establish the orthogonal table, optimize the benchmark space, reduce the redundant 

features, and extract the principal characteristics by Taguchi methods. The MD values for all of 

the datasets are re-calculated by using the optimized algorithm. 

(8) Identify the fault condition of the hydraulic pump. 

3. Case study 

3.1. Experimental setup 

In this study, a test plunger pump rig, as shown in Fig. 2, was tested and analyzed to verify the 

presented fault diagnosis method. In the experiment, two commonly occurring faults in the plunger 

pump were set, namely, slipper loosing and valve plate wear. Under three conditions, including 

the two faulty conditions and the normal state, the vibration signal was acquired from the end face 

of the plunger pump with a stabilized motor speed of 528 r/min, and sampling rate of 1000 Hz. 

Twelve samples were acquired under the normal condition and four samples were obtained for 

each of the two fault states. Among these samples, the first eight normal samples were used to 

construct the benchmark space, and the remaining samples were used for testing. 

 
Fig. 2. Experimental test plunger pump rig 

3.2. Feature extraction 

The feature vectors were determined by the proposed method. The vectors were calculated 

using the first eight IMF components. Fig. 3 shows the acceleration vibration signal of the 

hydraulic pump with a normal signal. It is decomposed into eight IMFs by EMD. As shown in 

Fig. 4, each IMF component has a distinct time characteristic scale. 

The system condition is mainly decided by the first several AR parameters and the remnant 

variance. The order of the model 𝑚, was determined by FPE criterion. This order is different from 

the number of IMF components, wherein the maximum and minimum components are 26 and 9, 

respectively. In this case, the first seven AR parameters 𝜑𝑖𝑘  (𝑘 = 1, 2, … ,7) and 𝜎𝑖
2 were chosen. 

These values constitute the eight-dimension vector. The extracted feature vectors are listed in 

Table 1 (only the feature vectors of the first four IMF components from one sample in each 

condition are listed in Table 1 because of space limitations). 𝐀𝑗𝑖  (𝑗 = 1, 2, 3;  𝑖 = 1, 2, 3, … , 8) 

denotes the feature vector of the 𝑖𝑡ℎ IMF component under the 𝑗𝑡ℎ condition, where 𝑗 denotes the 

normal condition, condition with valve plate wear, and condition with slipper loosing, and 𝑖 
denotes the first eight IMF components. The feature vector matrixes were decomposed to obtain 

the singular value by SVD. The extracted singular values are listed in Tables 2 and 3. The 
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extracted singular values for the model training (Table 2) are used to construct the benchmark 

space in calculating the MD, and the others (Table 3) are used for testing. 

 
Fig. 3. Acceleration vibration signal of the hydraulic pump with a normal signal 

 
Fig. 4. Decomposed results of the hydraulic pump vibration signal shown in Fig. 3 by EMD 

Table 1. Feature vector components extracted by AR 

Condition 

Model 

feature 

vectors 

Feature vectors components 

𝜑𝑖,1 𝜑𝑖,2 𝜑𝑖,3 𝜑𝑖,4 𝜑𝑖,5 𝜑𝑖,6 𝜑𝑖,7 𝜎𝑖
2 

Normal 

𝐴1,1 -0.414 -0.1131 -0.0102 -0.1803 0.1412 -0.0609 -0.0462 0.1543 

𝐴1,2 1.6701 -2.3772 2.2531 -1.9891 1.4422 -1.0649 0.615 0.0326 

𝐴1,3 2.6695 -3.3477 2.3751 -1.2443 0.6057 -0.245 -0.1426 0.0451 

𝐴1,4 3.6214 -5.3801 4.3623 -2.2972 0.8603 -0.0995 -0.1409 0.0210 

Valve  

plate wear 

𝐴2,1 0.3393 -0.2671 0.2528 -0.1634 0.1845 -0.2016 0.1769 0.2694 

𝐴2,2 2.5432 -2.986 1.8495 -0.8321 0.7009 -0.7447 0.4229 0.0542 

𝐴2,3 3.8075 -6.0481 5.3307 -3.0392 1.2048 0.1601 -1.4367 0.0676 

𝐴2,4 3.3826 -3.6803 0.573 1.3447 -0.3651 -0.6244 0.5474 0.0310 

Slipper 

loosing 

𝐴3,1 -0.4318 -0.0636 0.0609 -0.1346 0.1154 -0.1371 -0.1563 0.3576 

𝐴3,2 2.0283 -2.7278 2.9309 -2.697 2.0974 -1.6622 1.028 0.0754 

𝐴3,3 2.9621 -4.1079 3.5071 -2.5696 2.0354 -1.4728 0.6841 0.0678 

𝐴3,4 3.9105 -6.397 5.7949 -3.3625 1.2503 0.2273 -1.1323 0.0431 
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Table 2. Extracted singular values for model training  
Sample Condition 1 2 3 4 5 6 7 8 

1 

Normal 

11.4321 5.8741 1.9654 1.0453 0.3001 0.3540 0.5671 1.1201 

2 11.2650 6.0647 2.1096 1.0811 0.2655 0.4071 0.6304 1.3451 

3 11.4532 6.0421 1.9846 1.1546 0.3176 0.3679 0.6016 1.2306 

4 10.9546 6.0675 2.1326 1.1030 0.2709 0.4101 0.5977 1.3403 

5 11.0401 5.8154 2.0537 1.2574 0.3371 0.3791 0.5398 1.0756 

6 10.7416 5.8150 2.0529 1.0396 0.3259 0.4016 0.5343 1.2035 

7 11.5783 5.9074 1.8095 1.1277 0.3123 0.4044 0.5673 1.1431 

8 10.4506 6.0012 1.9901 1.2384 0.3451 0.3982 0.5512 1.3805 

Table 3. Extracted singular values for testing 
Sample Condition 1 2 3 4 5 6 7 8 

1 

Normal 

condition 

11.9631 6.0741 1.8647 1.1554 0.3204 0.3815 0.5250 1.3341 

2 11.2403 6.1434 2.0743 1.2675 0.2447 0.4179 0.6089 1.5656 

3 10.9551 6.3268 1.9337 1.1396 0.3266 0.3445 0.6649 1.0105 

4 11.9760 6.0181 2.1326 1.2820 0.2984 0.4316 0.5960 1.2872 

1 
Valve 

plate 

wear 

11.2331 3.9450 3.0629 1.0377 0.6026 0.3201 0.0671 0.1305 

2 11.2056 3.0837 3.2221 1.0879 0.6924 0.3748 0.0663 0.1346 

3 11.3034 2.9644 3.1108 0.9116 0.5886 0.2995 0.0552 0.1268 

4 11.9429 3.2617 3.1180 0.9225 0.7066 0.2959 0.0772 0.1363 

1 

Slipper 

loosing 

16.6911 3.6607 3.1738 1.5242 0.9463 0.4457 0.1703 0.0341 

2 15.9531 3.3237 2.9694 1.6792 0.9242 0.4666 0.1503 0.0454 

3 15.2329 3.6717 2.3824 1.4922 1.1201 0.5919 0.2184 0.0465 

4 15.9614 4.2698 3.0456 1.6257 1.2857 0.5296 0.2710 0.0326 

3.3. Pattern recognition 

3.3.1. Fault diagnosis based on the MD 

After obtaining the feature vectors using the proposed methods, the MD values of the testing 

samples for the three conditions can be obtained. The experimental results are listed in Table 4, 

wherein the MD between all the testing samples (Table 3) and the benchmark space composed of 

the trained normal samples (Table 2) are shown. Table 4 contains the mean, minimum, and 

maximum MDs for the three conditions. Separating the three conditions is easy by comparing the 

sizes of the MD values. These results verified that the MD method is very effective for fault 

detection and isolation. 

Table 4. Mean, minimum and maximum MD values 

 Normal condition Valve plate wear Slipper loosing 

Mean 2.9745 6.3752e+3 1.4668e+4 

Min-max 2.0645 – 4.2103 5.8055e+3 – 6.5876e+3 0.9707e+4 – 1.8737e+4 

3.3.2. Algorithm optimization by Taguchi methods 

First, the appropriate OA 𝐿9(28) is selected, which is used for the two abnormal datasets to 

identify which characteristic is useless. Considering the different characteristics of each line 

measuring project, nine different benchmark spaces are formed. The larger-the-better SNR is 

calculated. Tables 5 and 6 show the results of the OA and SNR analysis for the valve plate wear 

and slipper loosing testing datasets. 𝑡1 and 𝑡2 in Tables 5 and 6 respectively denote the sum of the 

measurement feature project SNRs in Level-1 and Level-2. 

From Tables 5 and 6, the energies of the 6th and 7th band should be excluded from the feature 

vector because they do not display a positive SNR for fault diagnosis. After the key features were 
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identified, the MD values for all of the testing datasets were recalculated. The comparison between 

the initial and optimized MDs for each dataset is listed in Table 7. The optimized MDs are more 

stable and distinguishable than the initial MDs, thereby verifying that the Taguchi methods are 

very effective in reducing the redundant characteristics and extracting the principle components. 

Therefore, MTS can effectively conduct a fault diagnosis of hydraulic pumps. 

Table 5. Results of the OA and SNR analysis for the valve plate wear dataset 

 1 2 3 4 5 6 7 8 SNR 

1 1 1 1 1 1 1 1 1 29.37 

2 1 1 1 1 1 2 2 2 50.38 

3 1 1 2 2 2 1 1 1 28.82 

4 1 2 1 2 2 1 2 2 14.68 

5 1 2 2 1 2 2 1 2 16.18 

6 1 2 2 2 1 2 2 1 24.08 

7 2 1 2 2 1 1 2 2 25.43 

8 2 1 2 1 2 2 2 1 26.81 

9 2 1 1 2 2 2 1 2 21.87 

𝑡1 27.25 30.45 29.08 30.69 32.32 24.58 24.06 27.27  

𝑡2 24.70 18.31 24.26 22.98 21.67 27.86 28.28 25.71  

𝑡1– 𝑡2 2.55 12.13 4.81 7.71 10.64 -3.29 -4.22 1.56  

Useful Y Y Y Y Y N N Y  

Table 6. Results of the OA and SNR analysis for the slipper loosing dataset 

 1 2 3 4 5 6 7 8 SNR 

1 1 1 1 1 1 1 1 1 55.04 

2 1 1 1 1 1 2 2 2 48.57 

3 1 1 2 2 2 1 1 1 28.78 

4 1 2 1 2 2 1 2 2 24.85 

5 1 2 2 1 2 2 1 2 26.36 

6 1 2 2 2 1 2 2 1 35.15 

7 2 1 2 2 1 1 2 2 24.67 

8 2 1 2 1 2 2 2 1 38.91 

9 2 1 1 2 2 2 1 2 25.95 

𝑡1 36.46 36.99 38.60 42.22 40.86 33.34 34.03 39.47  

𝑡2 29.84 28.79 30.77 27.88 28.97 34.99 34.43 30.08  

𝑡1– 𝑡2 6.61 8.20 7.83 14.34 11.89 -1.65 -0.40 9.39  

Useful Y Y Y Y Y N N Y  

Table 7. Comparison between the initial and optimized MDs 

Normal condition 

 Initial Optimized 

Mean 2.9745 0.8750 

Min-max 2.0645 – 4.2103 0.3958 – 1.0156 

Valve plate wear 

 Initial Optimized 

Mean 6.3752e+3 5.1592e+2 

Min-max 5.8055e+3 – 6.5876e+3 3.1254e+2 – 5.9355e+2 

Slipper loosing 

 Initial Optimized 

Mean 1.4668e+4 1.2638e+3 

Min-max 0.9707e+4 – 1.8737e+4 0.7084e+3 – 1.5321e+3 
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4. Conclusions 

The characteristic information of the hydraulic pumps can be effectively isolated and 

highlighted by EMD-AR and SVD combined with MTS. The AR model simulates the 

characteristics and working condition of hydraulic pump systems. However, the AR model can 

only analyze stationary signals; thus, in this study, a pretreatment on the vibration signals is carried 

out by EMD before the AR model is established. The IMF components not only reflect the actual 

information contained in the signal, but are also stationary. The IMF components obtained by 

EMD highlights the different local characteristic information of the original signal, which is useful 

for fault feature extraction. Using the AR model combined with SVD not only accurately reflects 

the hydraulic pump operation state, but also significantly compresses the input dimension of the 

MTS. The Taguchi methods offer a systematic way to determine the principal features based on 

the MD, which is a more effective method for fault diagnosis. 
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