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Abstract. In this study, a novel application of a wavelet packet energy-weighted support vector 
machine (WPE-WSVM) is proposed to perform fault classification of helicopter rotor. Because 
the helicopter rotor fault signal is weak, it is difficult to extract fault feature. The wavelet package 
is adopted to decompose the vibration signals on the fuselage into different frequency bands, and 
to eliminate the noise. And then single signal was reconstructed to extract the energy in each 
frequency band serving as fault feature vectors. And support vector machine was applied for 
classifying the failure mode of the helicopter rotor. For classification task support vector machine 
is used due to its good robustness and generalization performances. But the classification accuracy 
of standard support vector machine is relative slow when the number of samples of different 
classes is dramatically different. So a fuzzy weighted support vector machine was proposed, which 
added weight coefficient to samples of different classes. A comparative analysis of standard 
support vector machine and proposed fuzzy weighted support vector machine is done. The 
proposed fuzzy weighted support vector machine improved the classification accuracy of class 
with fewer samples. The proposed method is sufficiently accurate, fast, and robust, which makes 
it suitable for use in helicopter rotor fault diagnosis applications. 
Keywords: rotor fault diagnosis, wavelet packet energy spectrum, adaptive fuzzy weighted 
support vector machin. 

1. Introduction 

According to the helicopter rotor failure mechanism, the global failure of the rotor may lead 
to the increase of fuselage vibration signal at fundamental frequency and doubling frequency, 
while the other frequency band signal belongs to noise signals [1]. In order to extract fault features 
effectively, in this paper, wavelet package was used for reducing noise in the fuselage vibration 
signal firstly, and only signals in the concerned frequency band were retained, and signals in other 
frequency band were set to zero. Then reconstructed signal and extracted different frequency band 
energy serving as the feature vectors. 

Because the number of helicopter failure samples is extremely insufficient, the traditional 
Artificial Neural Networks (ANN) fault classifier presents a number of drawbacks, such as poor 
generalization capability, overfitting and local minima[2]. Support Vector Machine is a relatively 
new computational supervised learning method based on Statistical Learning Theory and 
combines fundamental concepts and principles related to learning, well-defined formulation and 
self- consistent mathematical theory. Unlike to most classification methods, SVM do not require 
a large number of training samples (Burges, 1998; Gunn, 1998). Moreover, the SVM method can 
solve the learning problem even when only a small amount of training samples is available. As a 
statistical learning theory, Support Vector Machine has an ability to get the optimal solution under 
the existing information rather than obtain the optimal value when the sample size is approaching 
infinite [2-8]. Due to the fact that it is hard to obtain sufficient helicopter fault samples in practice, 
in this paper, the support vector machine is applied in helicopter rotor fault diagnosis because of 
its high accuracy and good generalization for a small number of samples. 

In this paper, SVM is used to establish the mapping relationship between the wavelet energy 
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spectrum of the fuselage vibration and the rotor fault type, eventually, and achieve unbalance fault 
diagnosis of the helicopter rotor.  

SVM is an excellent way in solving the small sample classification problems, but there are still 
theoretical limitations [3-9]. For the purpose of improving the accuracy of fault diagnosis, the 
standard SVM requires that the number of two types of samples be roughly equal, and that the 
sample data be accurate and reliable. The misclassified proportion of the small sample size is 
higher than that of the large sample size. However, in the helicopter fault diagnosis, the sample 
sizes of two types are unbalance, and usually normal samples are much more than abnormal 
samples. Therefore, the standard SVM is not suitable for direct application in the helicopter fault 
diagnosis.  

Standard SVM has lower classification accuracy in the case of sample size imbalance, this 
paper proposed a Fuzzy Weighted Support Vector Machines (FW-SVM) for helicopter rotor fault 
diagnosis, in which different weight is added to two types of different samples. Based on standard 
SVM, FW-SVM assigns a fuzzy membership degree to different classes as weight values 
according to sample sizes and also assign a fuzzy membership degree to each different sample as 
weight value according to the importance of samples, to dealing with the classification inaccuracy 
caused by samples imbalance and unimportant samples improving the classification accuracy. 
This method improves the classification accuracy and diagnostic accuracy, and achieves the fault 
diagnosis of rotor system with high precision in the case of small samples. 

2. Feature extraction based on wavelet packet energy spectrum  

The purpose of the feature extraction process is to select and retain relevant information from 
original signals. Because, the wavelet transform (WT) provides both the frequency and spatial 
locality. In WT, the families of wavelets such as Daubechies are used. The scaling functions of 
WT decompose the original signal into various subbands such as lower pass filter and high-pass 
filter. In WT, the decomposition process is repeat performed to the low-frequency subband to 
compose the next level of the hierarchy. Wavelet package transform (WPT)is an extension of WT 
and it turns out that the WT is only one of the much possible decomposition that could be 
performed on the signal. Instead of just decomposing the low-frequency component, it is therefore 
possible to subdivide the whole time-frequency plane into different time-frequency pieces. 

The wavelet package transform of ݂(ݔ) is as below: 

ܽ, = ,(ݐ)݂〉 ߮,(ݐ)〉 = න 2ିଶோ(ݐ)݂ ߮(2ିݐ −  ,ݐ݀(݇
݀, = ,(ݐ)݂〉 ߶,(ݐ)〉 = න 2ିଶோ(ݐ)݂ ߶(2ିݐ − (1) .ݐ݀(݇

In which, ݂(ݐ) is signal function, ߶(ݐ) is the wavelet function, ߮(ݐ) is scaling function, ݆ is 
the scale of the decomposition, ݇ is translation factor, ݎ is the signal integration interval. ܽ,, ݀,, 
respectively, is the ݇th wavelet coefficient of low-frequency and high-frequency decomposition. 

According to Parseval equation: න|݂(ݔ)|ଶோ ݔ݀ =  ቀห ܽหଶ + ห ݀หଶቁ , (2)

Eq. (2) shows that the square of the wavelet transform coefficients has the dimension of energy. 
So the vibration signal is decomposed into different independent frequency band by using wavelet 
package transform. These signals under different frequency band contain a large number of 
non-stationary nonlinear diagnosis information relative to FFT spectrum, which is more valuable 
for fault diagnosis. Thus the signal energy of each frequency band can be used as the feature vector 
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to represent the operation state of equipment [9, 10], and the wavelet packet can be used for energy 
feature extraction of helicopter rotor fault diagnosis. 

3. Fuzzy Weighted Support Vector Machines (FW-SVM) 

Taking the linearly inseparable situation as example, the fuzzy membership is introduced into 
the samples as a weight, set the importance of a sample relative to a certain category as ߤ (0 ߤ> < 1). From the perspective of fuzzy mathematics, ߤ is a fuzzy membership degree to a certain 
type. Generally, ߤ = 1 means that the sample is very important for this class, oppositely, ߤ = 0 
means that the sample is not important for this class or even meaningless; in fact, ߤ  can be 
regarded as the degree of attachment for ܺ to a certain category, and 1 −   is the meaninglessߤ
extent. 

For example, add the fuzzy membership degree to samples: (ݕଵ, ,ଵܠ ,(ଵߤ ⋯ , ,ݕ) ,ܠ ,(ߤ ݕ = ሼ−1,1ሽ, ߪ < ߤ < 1, (݅ = 1,2, ⋯ , ݊),  .is a value greater than zero ߪ (3)
Then the optimal hyperplane problem (3) has evolved into the optimization problem as follows: 

min ,ܟ)ܴ (ߦ = 12 ,ܟ) (ܟ + ܥݏ  ߦߤ
ୀଵݏ. ܟ)ݕ  .ݐ · ܠ + ܾ) ≥ 1 − ߦ,ߦ ≥ 0,   ݅ = 1,2. (4) 

In Eq. (4), the fuzzy membership degree ߤ  is the weight of the sample ܺ , indicating the 
belonging degree of ܺ to a certain category, which is the degree of importance. ݏ is the weight 
of the class ݕ, ݏ > 1, indicating that the sample size of the jth class is relatively small. Parameter ߦ  is a variable representing the misclassified degree, ∑ ୀଵߦ  is the geometric losses of the 
misclassification. In FW-SVM, ߤߦ is a variable representing the misclassified degree of samples 
for different significant. The meaning of ∑ ୀଵߦߤ  is the actual loss of the misclassification, which 
reflects the combination of the structural risk minimization and empirical risk minimization. 
FW-SVM and standard SVM are identical while ݏ  and ߤ  are set to 1. In this way, the 
classification accuracy is influenced by class weights and sample weights. Set the weights of this 
type ݏ > 1 when sample size of a certain class is small; when a sample has a negative impact on 
the decision-making, set a relatively small fuzzy membership degree for this sample; when a 
sample is particularly important for decision-making, set a big fuzzy membership degree for the 
sample. Thus, the misclassification is avoided and the reliability of the classification is improved.  

The free variable ܥ in the SVM is used to control the classification interval and the number of 
misclassified samples (ܥ approaches infinite when misclassified samples is not allowed.). In the 
FW-SVM, we can set ܥ as a relatively large value in order to reduce the number of misclassified 
samples.  

In order to solve this optimization problem, construct the Lagrangian equation according to 
Eq. (15): 

,ܟ)ܮ ܾ, ,ߦ ,ߙ (ߚ = 12 ܟ · ܟ + ݏܥ  ߦߤ
ୀଵ −  ܟ)ݕ)ߙ · ܠ + ܾ) − 1 + (ߦ

ୀଵ −  ߦߚ
ୀଵ . (5) 

Calculate derivatives of each parameter in Eq. (6): 
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,ܟ)ܮ߲ ܾ, ,ߦ ,ߙ ܟ߲(ߚ = ܟ −  ܠݕߙ
ୀଵ = 0 ቌܽଵ 0⋱0 ܽቍ, 

,ܟ)ܮ߲ ܾ, ,ߦ ,ߙ ܾ߲(ߚ = −  ݕߙ = 0
ୀଵ ,ܟ)ܮ߲ , ܾ, ,ߦ ,ߙ ߦ߲(ߚ = ܥߤݏ − ߙ − ߚ = 0. 

(6)

Plug all above equations into the Lagrange equation (5), problem (4) can be converted into the 
following dual problem: 

maxܳ(ߙ) =  ߙ − 12
ୀଵ  ,ܠ൫ܭݕݕߙߙ ൯ܠ

,ୀଵ , 
.ݏ .ݐ  ߙݕ = 0,

ୀଵ  0 ≤ ߙ ≤ ݅   ,ܥߤݏ = 1, ⋯ , ݊, 
(7)

where the input sample ݔ corresponding to ߙ > 0 is called the support vectors. There are two 
kinds of support vectors: one is the sample corresponding to 0 < ߙ <  which distributes in ,ܥߤݏ
the edge of the hyperplane, and the other support vector is the sample corresponding to ߙ >  ,ܥߤݏ
which is misclassified samples. 

Thus the optimal decision function is: 

(ݔ)݂ = sgn  ൯ܠܠ൫ܭݕߙ
ୀଵ + ܾ൩, (8)

where sgn is the sign function, ݈ is the number of support vectors, and ܾ  is the classification 
threshold. 

The biggest difference between the standard SVM and the FW-SVM is the existence of ݏ 
and ߤ, the support vector corresponding to ߙ in SVM may be different from the support vector 
in the FW-SVM. FW-SVM turns to SVM while ݏ  and ߤ  are set to 1. The importance of the 
sample can be controlled by different ߤ, and a small ߤ makes the corresponding input sample ܺ 
become relatively unimportant. Moreover, the uneven compensation of samples can be achieved 
by different class weights ݏ. The performance of uneven compensation of the class weight will 
be discussed in detail below.  

4. Diagnostic test results of helicopter rotor fault 

In this paper, the vibration data of the mass imbalance fault, the aerodynamic imbalance fault 
and the normal state was decomposed by wavelet packet to extract the fault feature vector. 113 
groups of test data in different flight states are obtained, including: the number of samples of the 
mass unbalanced fault is 20; the number of samples of the aerodynamic unbalanced fault is 18, 
the number of samples of initial installation angle fault is 15 and the normal data is 60. In flight, 
the vibration signal of helicopter rotor spindle was collected. The rotor speed is about 386 r/min, 
the rotor spindle frequency is 6.4 Hz and the length of the data is ܰ = 5120. The wavelet package 
was used to extract the energy spectrum of each band as the feature vector.  

After the signal was de-noised, the wavelet energy was calculated. In order to verify the 
effectiveness of the fuzzy weighted SVM algorithm, a comparative analysis of standard support 
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vector machine and proposed fuzzy weighted support vector machine is done. 
According to the extracted fault feature vectors, the whole samples set can be divided into the 

training sample and the testing sample. For the convenience of training, all the fault samples were 
put together as a category and normal samples as another category.  

Select quadratic polynomial ݔ)ܭ, (ݔ = ݔ)] · (ݔ + 1]ଷ as the kernel function, and let1500 = ܥ. 
standard SVM classification results are shown in Figure 1. The “*” signs represents the fault 
sample, the “+” signs represents normal sample and the solid line represents the projection of 
classification surface. It can be seen that the “red * sample A” belonging to the fault sample was 
wrongly divided into the normal sample, which is mainly caused by the unbalance number of 
normal samples and failure samples. It can be seen that the standard SVM algorithm correctly 
classify four fault samples and two normal sample, but incorrectly classify another minor fault 
sample as the normal state. 

 
Fig. 1. Classification results of SVM 

 
Fig. 2.The classification results of FW-SVM 

Adopting the FW-SVM algorithm to classify the samples, the proportion of normal class 
weighting coefficients and fault class weighting coefficients is inversely proportion of the sample 
size of these two types.In practical applications, the general requirement is that fault samples can 
be detected out completely while some normal samples can be classified as fault samples. And the 
other category contains only normal samples without including any failure samples, whose 
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misclassification loss is small. Also it showed that the degree of attention of fault samples is 
greater than that of normal samples. Therefore, set the fuzzy membership degree of all fault 
samples as 0.9, the fuzzy membership degree of the normal sample as 0.6. Adopt Quadratic 
polynomial as the kernel function: ݔ)ܭ, (ݔ = ݔ)] · (ݔ + 1]ଷ, 1500 = ܥ, classification results of 
FW-SVM are shown in Figure 2. It can be seen from Figure 2 that when the FW-SVM is used, 
the classification range of normal samples is narrowed, the fault sample A is correctly assigned to 
the area of fault samples, and normal samples no longer contain the points of fault samples. 

From the classification results, we can see that after adding weights to the fault samples and 
normal samples, the classification surface is biased in favor of the normal state. At this time, the 
minor fault test sample is divided into the failure state, of which a normal sample was misclassified 
into the failure category. This is the embodiment of the basic idea of the FW-SVM algorithm: the 
relatively small losses caused by misclassification of normal samples and attaching importance to 
the fault data processing. 

5. Conclusions 

This paper proposed a fuzzy weighted support vector machine (FW-SVM) combining support 
vector machine and fuzzy theory, the analysis result of test data showed that: 

1) Compared with the standard support vector machines, the fuzzy weighted support vector 
machine improves anti-jamming capability by adding weighting factor of samples to the fault 
diagnosis. 

2) The fuzzy weighted support vector machine can improve the classification accuracy of class 
with fewer samples by adding different weights to samples of different fault types.  
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